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We develop parallel program for numerical simulation of the interaction of intense laser pulses with many-
electron atoms on the basis of the time-dependent Kohn-Sham equations. It is shown that the use of modern com-
puter clusters makes it possible to solve these equations for a wide class of atoms in a relatively small time, deter-
mined by the parameters of the laser pulse and electronic configuration of the atom. High accuracy of the numerical
code is demonstrated on the example of calculating the high-frequency spectrum of electron current excited during

ionization of noble gas atoms by few-cycle laser pulse.
PACS: 52.38.-r, 31.15.ee, 32.80.-t

INTRODUCTION

Interaction of intense laser field with atoms and
molecules is accompanied by many different phenome-
na interesting from the scientific and applied points of
view. These phenomena include, in particular, above-
threshold ionization [1], which consists in the possibility
of absorption of more photons than are required for the
ionization; high-order harmonic generation, which is the
result of the acceleration of freed electrons and their
collisions with the parent ions [2 - 8]. The excited elec-
tron currents can also contain a low-frequency compo-
nent responsible for the generation of radiation with a
frequency much lower than the optical ones, in particu-
lar, in the terahertz and mid-IR range [9 - 14].

Despite the fact that most of the atoms and mole-
cules are essentially many-electron quantum systems,
numerical studies of the above-mentioned ionization-
induced phenomena are traditionally based on the sin-
gle-active-electron approximation. Within the frame-
work of this approximation all the electrons except one
are frozen in their orbitals and the field of the parent ion
is described by a static potential well. Such models can
have high accuracy under certain conditions, but in
many problems single-active-electron approximation is
inapplicable, since it does not describe a number of es-
sentially many-electron effects, such as the polarization
of the atomic system. One of the methods for describing
many-electron effects, which is close to the many-
electron time-dependent Schrddinger equation, is the
time-dependent density functional theory, which has
recently been increasingly used in atomic physics and
nonlinear optics [15 - 18]. This approach is based on the
system of time-dependent Kohn-Sham (TDKS) equa-
tions, in which the Hamiltonian for individual orbitals
includes the interaction with the atomic nucleus, elec-
tron-electron interaction, as well as interaction with the
electric field of the laser pulse [17].

This paper is devoted to the development of parallel
program for the numerical solution of TDKS equations
for ab initio simulation of the evolution of many-
electron atoms (such as neon, argon, krypton, and other
noble gas atoms) during the interaction with an intense
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laser fields. The algorithm for solving the three-
dimension TDKS equations is based on the spherical
harmonics expansion of the potential energy and wave
functions of orbitals. The increase in performance of the
program related to the parallelization of its individual
modules is analyzed and the high accuracy of the pro-
gram is demonstrated.

1. STATEMENT OF THE PROBLEM

Suppose that a many-electron atom interacts with a
linearly polarized laser-pulse electric field of strength
E(t) = ZE(t) , where t is the time. We assume that the
intensity and wavelength of the laser pulse correspond
to the dipole approximation in which the action of the
magnetic field in the calculation of the atom dynamics
can be neglected [4]. We also limit ourselves here to the
consideration of atoms in which orbitals initially are
occupied by electrons of the opposite spin. Due to the
weak influence of the magnetic field, the zero spin po-
larization is conserved during interaction with the laser
pulse, therefore TDKS equations describing the dynam-
ics of a many-electron system are written down as fol-
lows (here and below, the atomic system of units is used
in which |¢|=7=m, =1, where 7 is the reduced Planck

constant, e=—|e| is the charge and m, is the mass of
the electron):
i%wn(r,t) =y, (), n=1.,N2

o 1)
H= —EVZ _T+ ZE(t) +Vee[p(rrt)]'

Here, w, is the wave function of the n-th TDKS or-

bital, Z is the nuclear charge, N is the (even) number of
electrons, p is the electron density, Vg[po(r,t)] is the

potential of electron-electron interaction. The electron
density is related to TDKS orbitals by equality

N/2 2
p(rt)= zgllwn (r.t)". )

The electron-electron interaction potential consists
of the Hartree potential

Vi lo(rt] = far 200 ©)
Ir—r]
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describing the electron repulsion in the framework of
the mean field, and the exchange-correlation potential
V,. for which the spin unpolarized form of LB94 ap-
proximation [19] is used
Vi X p(r, 01 =V, A Lo(r )]
218 5,2 (1) p1f3 (n ] 4)
14328 gy (n)sinh 22 1(0)]

Here, VPA[p(r,t)] is the exchange-correlation po-
tential in the local density approximation [17],
2 =[Vp))ip™3(r), and p=0.05. The initial condi-
tion corresponds to the ground state of the atom, which
is described by the stationary Kohn-Sham orbitals
Wn,o(r) .

':ioWn,o(f) =Epwno. )
5
~ 1 Z
Ho = —EVZ _T"'Vee[po(r)]y
where E,, is the energy of the n-th orbital.

Using TDKS orbitals and Ehrenfest's theorem one
can find the time-dependent dipole acceleration of the
atomic system [18]:

a(t) = —NE(t) - jd%%p(r,t). ©)

Then, the macroscopic electron current density in
the  produced plasmas can be found as

j®)=-Ng[ a()dt’, where N is the gas density be-

fore the start of the ionization process [20]. In addition,
using the wave functions of TDKS orbitals after the
passage of the laser pulse, one can find the final photoe-
lectron momentum distribution [15]

N2
P(p) = 22_:1|V/n ()l @)

where p is the momentum vector and v, (p) is the spa-
tial Fourier transform of the n-th TDKS orbital except
the projections on atomic bound states.

2. THE NUMERICAL IMPLEMENTATION
2.1. THE NUMERICAL METHOD

For the numerical solution of TDKS equations, or-
bitals y,(r,t) are decomposed into spherical harmonics
@l +1)(1-m)!

47 (1 +m)!
where @ is the polar angle with respect to z-axis di-
rected along the external field, ¢ is the azimuthal angle,

Yim (6,9) = A" (cos@)e™,  (8)

A™ are the associated Legendre polynomials. The ini-
tial Kohn-Sham orbitals correspond to the electronic
configuration of the unperturbed atom and are given by

Vno(r0.9) =1 ¥ (Y m (6,0), )
where 1, and m, are orbital and magnetic quantum

numbers of the n-th orbital. Since the external electric
field has linear polarization, the magnetic quantum
number of each orbitals is conserved in time, therefore
in the decomposition of TDKS orbitals only the term
with m = m, exists:

Va(r.0.0.0) = r‘léwm (0¥, (@0).  (10)
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To find the time dynamics of the radial component
of the n-th TDKS orbital, the following method is used
(the modification of which is also used to calculate sta-
tionary orbitals). The potential of the electron-electron
interaction V., is decomposed into spherical harmonics

up to the quadrupole term:
Vee(r,6,1) zve(g)(r,t) +Ve(el)(r,t)cose
(11)
+Ve(ez)(r,t)%(3cos2 9—1).

Substituting (10), (11) into (1), multiplying by the
spherical harmonic YIrnn , and integrating over the solid
angle, we obtain a system of equations on ¥, , which is
conveniently represented in the matrix form

i%‘l’n(r,t) = (R + W, )0 (r ). (12)

Here ¥, is the coulomn vector whose I-th element

is ¥, R, isthe diagonal matrix with elements

- 102 10+1) 2z
[Rn]|| :___+(—2)__
2r r
(1 +1) —3m? v
@-1)1+3) *
The elements of the pentadiagonal matrix \7vn,

which represents the dipole interaction electrons with
the electric field and dipole and partly quadrupole terms
of electron-electron interaction, are given by

di_gm Ve (r,1), k=1-2
& i (FEO+VD (D), k=1-1

(13)

+VO(r 1)+ (r,0).

[Wn]k| =1Cim, GE(t)+ve(g>(r,t)), k=1+1 (14)
dl,mnve(ez)(r:t): k=1+2
0 otherwise,
where
[ (1+1)%-m?
am SNain@+a)’
(15)

o 23y [0r27-m?
' 2 "™ @2l +3)2l +5)
The evolution of TDKS orbitals to the time step At
is performed using the following propagator:
W (rt+ At = U, (t+AL Y)Y, (1Y),

(16)

U, (t+AL Y = exp(—i PR (1) + W (t')]).
The propagator fJn(t+At,t) is approximated up to
the second order in At as follows:
On(t+At,t)zexp(—iAth(t)/Z)
x exp(— AR, (t))exp(— IAtW,, (t)/ 2)
The application of the exponential operator
exp(— iAt\fvnlz) is performed using diagonalization of the

(17

matrix \/Avn by the unitary transformation

Wi, = S, W, giagSh, Where the sign " +" corresponds to
the Hermitian conjugation, resulting in
exp(— IAtW, (t)/2)= Sn exp(— 1At Wi, giag (t)/z)érﬁ. (18)
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The operator exp(— iAtlfzn) can be applied using the
Crank-Nicholson approximation

exp(—iAtR ) ~ (1+iAtR /2 2(1-iAtR,/2).  (19)

The second derivative in R, is computed using the

Numerov approximation with the equidistant step along
r. To calculate the radial part W, ,(r) of the stationary

Kohn-Sham orbitals (the initial condition for the time
problem), we use a similar algorithm in which the time
has purely imaginary values [21].

2.2. PARALLELIZATION OF NUMERICAL
CODE

The method used to solve TDKS equations is well
suited for execution on computer clusters, since it has
two levels of parallelism. The first level is related to the

properties of the matrices R, and W,. The matrix R,

is diagonal and the application of the operator (19) is
calculated independently for each I-th component of the
vector ¥, (I parallelism). The operator (18) is applied

independently for each point of the radial grid (r paral-
lelism). The first level of parallelism is convenient for
implementing on systems with shared memory using
OpenMP technology. The second level of parallelism is
ensured by the fact that some operations for different
orbitals are performed independently (n parallelism).
This level of parallelism can be implemented for sys-
tems with a distributed memory using MPI technology.

For cluster systems having many nodes consisting of
several sockets the parallel propagation algorithm for
one time step can be implemented as follows:

e For each orbital w,(t) the action operator

U, (t+At,t) is performed in parallel inside differ-

ent sockets of different nodes of the cluster.
e The calculated values W, (t+At) are sent to the

one (main) node.
e On the main node the electron-electron potential
Ve [o(t + At)] is calculated on the basis of ¥, (t + At)

and is sent to all the involved cluster nodes.

The Table compares the propagation time for one
time step without using parallelization (on a single core)
and using different variants of parallelization of pro-
gram modules on a computer cluster. The latter consists
of a large number (more than 30) nodes connected by a
high-speed computer-network InfiniBand with the
bandwidth 14 Gbit/s between nodes. Each node repre-
sents a two-socket system with two 10-core Intel Xeon
E5-2680 v2 processors. Calculations are performed for
three different noble gas atoms: neon, argon, and kryp-
ton. To describe the dynamics of the atom (using the
symmetry in the spin and in the magnetic quantum
number) only 4, 7, and 13 independent TDKS orbitals
are used for Ne, Ar, and Kr, respectively. The radial
numerical grid has N,=10* nodes and the maximum
value of the orbital angular momentum is I, =512.

As one can see from the Table, the usage of | and r
parallelisms inside one socket leads to a multiple de-
crease of propagation time. The increase of the perfor-
mance approximately equals to the number of cores in
the socket (which is 10 on the used system).
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One-step calculation time (s)
Atom | single core |single socket cluster
(no parallelism) (r,1 parallelism) | (n,r,l parallelism)
Ne 26.6 3.31 1.22
Ar 46.48 5.86 1.32
Kr 113.74 16.12 15

The one-time-step propagation time for three atoms: Ne,
Ar, and Kr. The first column shows the result for the
single-CPU (parallelization-free) calculation. The sec-
ond column is propagation time for 10 cores of single
processor with the parallelization of operators (18) and
(19). The third column shows the propagation time with
the additional parallelization in orbitals. It is computed
on 2 cluster nodes for Ne, 4 nodes for Ar, and 7 nodes
for Kr (each node has 20 cores in total)

At the same time, the efficiency of n parallelism
strongly depends on the speed of data transfer between
cluster nodes, on the number of sockets on each node,
and on the number of independent orbitals in an atom.
For the used computer cluster with 2 sockets on each
node the increase of the performance is 2.7 for Ne atom,
4.4 for Ar, and 10.7 for Kr. The one-step propagation
time for different atomic systems is approximately the
same (1.2...1.5s), which is associated with almost
complete parallelization in orbitals.

It should be noted, however, that in the considered
example the number of numerical grid nodes N, is fixed.
At the same time, when solving some physical problem
with the use of TDKS equations, it is necessary to re-
duce the coordinate step near the nucleus as the nuclear
charge increases in order to ensure high accuracy of
calculations. Moreover, it is necessary also to decrease
the time step At to resolve the natural frequencies of the
lowest orbitals [22]. This leads to a rather significant
decrease in the speed of numerical simulation with the
increase of the atom nuclear charge, which will be
demonstrated in the examples of calculation below.

2.3. EXAMPLES OF CALCULATION

In order to test the developed computational code,
we consider neon, argon, and krypton atoms interacting
with a few-cycle laser pulse with the electric field hav-
ing the sine-squared envelope located at 0<t <z,

E(t) = —oA/at,
A®) = —(Eqlp)sin?(at/ 7, Jsin(agt).

Here, E, is the peak amplitude of the electric field,

corresponding to the peak intensity 3.10 W/cm?,
mg ~0.057 au is the carrier frequency, corresponding to

the wavelength 800 nm, and 7, ~14.7 fs corresponds to

(20)

two cycles at the full-width at half maximum of intensi-
ty.

g Calculations are performed in the spatial region
0 <1 < Fyay » Where g, =200 au with the maximum val-
ue of the orbital angular momentum I, =512. The step
along the radial coordinate is Ar=0.04 au for Ne,
Ar=0.02 au for Ar, and Ar=0.01 au for Kr, the time
step is At = 2.4-1072 au for Ne, At =8-10~ au for Ar, and
At =2-103au for Kr. To absorb waves approaching the
boundary along r, a three-hump imaginary potential [23]
with a total width of the absorbing layer I, =50 is

279



used. To perform the calculations we use 4 sockets/2
nodes for Ne, 7 sockets/4 nodes for Ar, and 13 sockets/7
nodes for Kr. The large difference in N, = rp, /Ar and

in the time step At for different atoms leads to a differ-
ence in calculation time which is 5 hours for Ne, 32
hours for Ar, and 12 days 6 hours for Kr.

Ne

1071

Spectral intensity (atomic units)

1072

1072 4 . . . .
0 20 40 60 80 100

Photon energy (eV)

The spectra of dipole acceleration excited during inter-
action of Ne (a), Ar (b), and Kr (c) atoms with short
laser pulse with the wavelength of 800 nm and peak

intensity of 3-10** W/cm?. The dashed line indicates
classical cutoff of frequency o, =1, +3.17U ,, where

I, is the ionization potential of atom and U , is the
maximum electron ponderomotive energy

The squared modulus of the Fourier spectrum of the
dipole acceleration is shown in Figure. As can be seen
from the Figure, the spectrum for Ne, Ar, and Kr con-
tains a high-frequency part lying in the vacuum ultravio-
let range, which is associated with rescattering of the
photoelectrons on the parent ion [2 - 8]. The shape of
the spectrum depends strongly on the type of atom.
With increasing ionization potential 1, (1, =13.99 eV

for Kr, 15.76 eV for Ar, and 21.55 eV for Ne), the max-
imum energy of the generated harmonics increases ac-
cording to the well-known formula for the plateau cutoff
position @, =1,+3.17U,, where U, is the maximum

electron ponderomotive energy [2, 3]. At the same time
the spectral intensity decreases with increasing of ioni-
zation potential, since ionization probability of the atom
decreases. The high-frequency spectrum for the case of
Ar contains a minimum located approximately at 51 eV.
This minimum is called Cooper minimum and is oc-
curred due to the interference of two electron recombi-
nation channels in the ground state: s—p and d —» p
[6, 24]. The minimum position obtained in the presented
calculation is in good agreement with the results of ex-
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periments on the high harmonics generation in Ar [24],
as well as with known results of numerical calculations
using the time-dependent density functional theory [18],
which confirms the high accuracy of the developed
code. The Cooper minimum for Kr is not observed in
Figure since it is located at 80 eV [25] that is higher
than the cutoff frequency «. for the considered parame-
ters of the laser pulse.

CONCLUSIONS

The parallel program code has been developed for
the numerical solution of the time-dependent Kohn-
Sham equations for ab initio modeling of the evolution
of many-electron atoms during the interaction with an
intense laser field. The solution algorithm is based on
the decomposition of the wave functions of the Kohn-
Sham orbitals and the potential energy into spherical
harmonics. The high accuracy of the program is demon-
strated by the example of calculating the spectrum of a
high-frequency electron current excited during ioniza-
tion of noble gas atoms by a few-cycle laser pulse. It is
shown that the use of parallelization between the nodes
of modern computer clusters and between the CPUs of
individual socket makes it possible to perform calcula-
tions for typical parameters of laser pulses in a relative-
ly small time from several hours to several days depend-
ing on the atomic system under consideration.
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KBAHTOBO-MEXAHUYECKOE MOJIEJIUPOBAHUE B3AUMOJENCTBUS
MHOT O2JIEKTPOHHBIX KBAHTOBBIX CUCTEM
C NHOHU3UPYIOIIUMU JIABEPHBIMHU NMITYJIbCAMU

A.A. Pomanos, A.A. Cunaes, /I.A. Cmupnosa, T.C. Capanyesa, A.A. Mununa, M.B. @ponos, H.B. Beeoenckuii

PaspabaTsiBaeTcs mapauieNbHBIA TPOrPAMMHBIA KO ISl YUCIIEHHOTO MOJICITUPOBAHNS B3aMMOICHCTBHS HHTCH-
CHUBHBIX JIA3EPHBIX UMITYJIHCOB C MHOTO3JEKTPOHHBIMH aTOMaMH Ha OCHOBE HECTAIIMOHAPHOTO MeTona (yHKIIMOHA-
7a WIOTHOCTH. [loKa3kIBaeTCsl, YTO NCTIOIB30BAaHHE COBPEMEHHBIX MHOTOIIPOIIECCOPHBIX BBHIYHCIUTENBHBIX KIIacTe-
POB TIO3BOJIIET PEUINTH HecTaroHapHble ypaBHeHHS Kona-1lIama 1 mmpokoro kiacca aTOMOB 32 OTHOCHUTEIHHO
HeOOJIBIIIOe BpeMs, OTIpeleNIIeMOoe TapaMeTpaMy JIa3epHOT0 UMITYJIbCa U AIEKTPOHHOH KoHHrypanuei atoma. [le-
MOHCTpAIUs PabOThI YUCIEHHOTO KOJ]a MPECTABICHA HA MPUMEPE pacyera CHEKTPa BEICOKOYACTOTHOTO AJIEKTPOH-
HOTO TOKa, BO30Y>KIaeMOT0 MPH HOHU3AIIUH ATOMOB HHEPTHBIX I'a30B KOPOTKHUM JIa3ePHBIM HMITYJIBCOM.

KBAHTOBO-MEXAHIYHE MOJIEJTIOBAHHS B3AEMO/IIi BATATOEJEKTPOHHUX KBAHTOBUX
CHUCTEM 3 IOHI3YIOUUMMU JIABEPHUMU IMITYJIBCAMHA

A.A. Pomanos, A.A. Cunaes, /1.A. Cmupnosa, T.C. Capanyesa, A.A. Minina, M.B. ®ponos, H.B. Beedencovkuii

Po3pobusieTsest mapanelbHU NpOrpaMHUI KO JJISL YUCEIBHOTO MOJEIOBAaHHS B3a€MO/Ii IHTEHCHBHUX Jla3ep-
HUX IMITyJIbCIB 3 OaraToelleKTpOHHUMH aTOMaMH Ha OCHOBI HecTaIlioHapHOTO MeToxy (yHKIioHana minsHOCTi. [o-
Ka3yeTbCs, IO BUKOPUCTAHHS CYYacHHUX OaraTOIPOIIECOPHUX OOYMCIIOBAIBHUX KIIACTEPIB IO3BOJISIE PO3B’S3aTH
HecranioHapHi piBHAHHA Kona-Illema ans mmpoKoro Kiacy aToMiB 3a BiTHOCHO HEBEIHMKHA Yac, II0 BU3HAYAETHCS
mapaMeTpaMH Ja3epHOTro iIMIYIBCY 1 €JIeKTPOHHOI0 KOH(Irypariero atoMa. JJeMoHCTparist poOOTH YHCETFHOTO KOy
IpelCTaBleHa Ha MPUKIAAI PO3PAaXyHKY CHEKTpa BUCOKOYACTOTHOTO SJIIEKTPOHHOTO CTPYMY, IIO 30YIDKYETHCS IPH
10HI3aIlii aTOMIB IHEPTHUX ra3iB KOPOTKUM JIA3ePHUM IMITYJIHCOM.
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