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We develop parallel program for numerical simulation of the interaction of intense laser pulses with many-

electron atoms on the basis of the time-dependent Kohn-Sham equations. It is shown that the use of modern com-
puter clusters makes it possible to solve these equations for a wide class of atoms in a relatively small time, deter-
mined by the parameters of the laser pulse and electronic configuration of the atom. High accuracy of the numerical 
code is demonstrated on the example of calculating the high-frequency spectrum of electron current excited during 
ionization of noble gas atoms by few-cycle laser pulse. 
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INTRODUCTION  
Interaction of intense laser field with atoms and 

molecules is accompanied by many different phenome-
na interesting from the scientific and applied points of 
view. These phenomena include, in particular, above-
threshold ionization [1], which consists in the possibility 
of absorption of more photons than are required for the 
ionization; high-order harmonic generation, which is the 
result of the acceleration of freed electrons and their 
collisions with the parent ions [2 - 8]. The excited elec-
tron currents can also contain a low-frequency compo-
nent responsible for the generation of radiation with a 
frequency much lower than the optical ones, in particu-
lar, in the terahertz and mid-IR range [9 - 14]. 

Despite the fact that most of the atoms and mole-
cules are essentially many-electron quantum systems, 
numerical studies of the above-mentioned ionization-
induced phenomena are traditionally based on the sin-
gle-active-electron approximation. Within the frame-
work of this approximation all the electrons except one 
are frozen in their orbitals and the field of the parent ion 
is described by a static potential well. Such models can 
have high accuracy under certain conditions, but in 
many problems single-active-electron approximation is 
inapplicable, since it does not describe a number of es-
sentially many-electron effects, such as the polarization 
of the atomic system. One of the methods for describing 
many-electron effects, which is close to the many-
electron time-dependent Schrödinger equation, is the 
time-dependent density functional theory, which has 
recently been increasingly used in atomic physics and 
nonlinear optics [15 - 18]. This approach is based on the 
system of time-dependent Kohn-Sham (TDKS) equa-
tions, in which the Hamiltonian for individual orbitals 
includes the interaction with the atomic nucleus, elec-
tron-electron interaction, as well as interaction with the 
electric field of the laser pulse [17]. 

This paper is devoted to the development of parallel 
program for the numerical solution of TDKS equations 
for ab initio simulation of the evolution of many-
electron atoms (such as neon, argon, krypton, and other 
noble gas atoms) during the interaction with an intense 

laser fields. The algorithm for solving the three-
dimension TDKS equations is based on the spherical 
harmonics expansion of the potential energy and wave 
functions of orbitals. The increase in performance of the 
program related to the parallelization of its individual 
modules is analyzed and the high accuracy of the pro-
gram is demonstrated.  

1. STATEMENT OF THE PROBLEM 
Suppose that a many-electron atom interacts with a 

linearly polarized laser-pulse electric field of strength 
)(ˆ=)( tEt zE , where t  is the time. We assume that the 

intensity and wavelength of the laser pulse correspond 
to the dipole approximation in which the action of the 
magnetic field in the calculation of the atom dynamics 
can be neglected [4]. We also limit ourselves here to the 
consideration of atoms in which orbitals initially are 
occupied by electrons of the opposite spin. Due to the 
weak influence of the magnetic field, the zero spin po-
larization is conserved during interaction with the laser 
pulse, therefore TDKS equations describing the dynam-
ics of a many-electron system are written down as fol-
lows (here and below, the atomic system of units is used 
in which 1=== eme  , where   is the reduced Planck 
constant, ||= ee −  is the charge and me is the mass of 
the electron):  
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Here, nψ  is the wave function of the n-th TDKS or-
bital, Z is the nuclear charge, N is the (even) number of 
electrons, r is the electron density, )],([ tVee rr  is the 
potential of electron-electron interaction. The electron 
density is related to TDKS orbitals by equality  
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The electron-electron interaction potential consists 
of the Hartree potential  
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describing the electron repulsion in the framework of 
the mean field, and the exchange-correlation potential 

xcV  for which the spin unpolarized form of LB94 ap-
proximation [19] is used  
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Here, )],([ tV LDA
xc rr  is the exchange-correlation po-

tential in the local density approximation [17], 
)(/)(=)( 4/3 rrr rrχ ∇ , and 05.0=β . The initial condi-

tion corresponds to the ground state of the atom, which 
is described by the stationary Kohn-Sham orbitals 

)(,0 rnψ :  
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where nE  is the energy of the n-th orbital. 
Using TDKS orbitals and Ehrenfest's theorem one 

can find the time-dependent dipole acceleration of the 
atomic system [18]:  
 ).,()(=)( 3

3 t
r
ZrdtNt rrEa r∫−−  (6) 

Then, the macroscopic electron current density in 
the produced plasmas can be found as 

tdtNt t
g ′′− ∫ ∞− )(=)( aj , where gN  is the gas density be-

fore the start of the ionization process [20]. In addition, 
using the wave functions of TDKS orbitals after the 
passage of the laser pulse, one can find the final photoe-
lectron momentum distribution [15] 
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where p  is the momentum vector and )(~ pnψ  is the spa-
tial Fourier transform of the n-th TDKS orbital except 
the projections on atomic bound states. 

2. THE NUMERICAL IMPLEMENTATION 
2.1. THE NUMERICAL METHOD 

For the numerical solution of TDKS equations, or-
bitals ),( tn rψ  are decomposed into spherical harmonics  
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where θ  is the polar angle with respect to z-axis di-
rected along the external field, ϕ  is the azimuthal angle, 

m
lP  are the associated Legendre polynomials. The ini-

tial Kohn-Sham orbitals correspond to the electronic 
configuration of the unperturbed atom and are given by  
 ),,()(=),,( ,0

1
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where nl  and nm  are orbital and magnetic quantum 
numbers of the n-th orbital. Since the external electric 
field has linear polarization, the magnetic quantum 
number of each orbitals is conserved in time, therefore 
in the decomposition of TDKS orbitals only the term 
with m = mn exists:  
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To find the time dynamics of the radial component 
of the n-th TDKS orbital, the following method is used 
(the modification of which is also used to calculate sta-
tionary orbitals). The potential of the electron-electron 
interaction eeV  is decomposed into spherical harmonics 
up to the quadrupole term:  
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Substituting (10), (11) into (1), multiplying by the 
spherical harmonic 

nlmY , and integrating over the solid 

angle, we obtain a system of equations on nlΨ , which is 
conveniently represented in the matrix form  

 ( ) ).,(ˆˆ=),( trtr
t

i nnnn ΨWRΨ +
∂
∂  (12) 

Here nΨ  is the coulomn vector whose l-th element 

is nlΨ , nR̂  is the diagonal matrix with elements  

 
[ ]

).,(
3)1)(2(2

31)(
),(

2
1)(

2
1=ˆ

(2)
2

(0)

22

2

trV
ll

mll
trV

r
Z

r
ll

r

ee
n

ee

lln

+−
−+

++

−
+

+
∂

∂
−R

 (13) 

The elements of the pentadiagonal matrix nŴ , 
which represents the dipole interaction electrons with 
the electric field and dipole and partly quadrupole terms 
of electron-electron interaction, are given by  
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The evolution of TDKS orbitals to the time step t∆  
is performed using the following propagator:  
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The propagator ),(ˆ tttn ∆+U  is approximated up to 
the second order in t∆  as follows:  
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The application of the exponential operator 
( )/2ˆexp nti W∆−  is performed using diagonalization of the 

matrix nŴ  by the unitary transformation 
†

diag,
ˆˆˆ=ˆ

nnnn SWSW , where the sign " † " corresponds to 
the Hermitian conjugation, resulting in  
 ( ) ( ) .ˆ2/)(ˆexpˆ=2/)(ˆexp †

diag, nnnn ttitti SWSW ∆−∆−  (18) 
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The operator ( )nti R̂exp ∆−  can be applied using the 
Crank-Nicholson approximation  
 /2).ˆ(1/2)ˆ(1)ˆ(exp 1

nnn tititi RRR ∆−∆+≈∆− −  (19) 

The second derivative in nR̂  is computed using the 
Numerov approximation with the equidistant step along 
r . To calculate the radial part )(,0 rnΨ  of the stationary 
Kohn-Sham orbitals (the initial condition for the time 
problem), we use a similar algorithm in which the time 
has purely imaginary values [21]. 

2.2. PARALLELIZATION OF NUMERICAL 
CODE 

The method used to solve TDKS equations is well 
suited for execution on computer clusters, since it has 
two levels of parallelism. The first level is related to the 
properties of the matrices nR̂  and nŴ . The matrix nR̂  
is diagonal and the application of the operator (19) is 
calculated independently for each l-th component of the 
vector nΨ  (l parallelism). The operator (18) is applied 
independently for each point of the radial grid (r paral-
lelism). The first level of parallelism is convenient for 
implementing on systems with shared memory using 
OpenMP technology. The second level of parallelism is 
ensured by the fact that some operations for different 
orbitals are performed independently (n parallelism). 
This level of parallelism can be implemented for sys-
tems with a distributed memory using MPI technology. 

For cluster systems having many nodes consisting of 
several sockets the parallel propagation algorithm for 
one time step can be implemented as follows: 

• For each orbital )(tnΨ  the action operator 
),(ˆ tttn ∆+U  is performed in parallel inside differ-

ent sockets of different nodes of the cluster. 
• The calculated values )( ttn ∆+Ψ  are sent to the 

one (main) node.  
• On the main node the electron-electron potential 

)]([ ttVee ∆+ρ  is calculated on the basis of )( ttn ∆+Ψ  
and is sent to all the involved cluster nodes. 

The Table compares the propagation time for one 
time step without using parallelization (on a single core) 
and using different variants of parallelization of pro-
gram modules on a computer cluster. The latter consists 
of a large number (more than 30) nodes connected by a 
high-speed computer-network InfiniBand with the 
bandwidth 14 Gbit/s between nodes. Each node repre-
sents a two-socket system with two 10-core Intel Xeon 
E5-2680 v2 processors. Calculations are performed for 
three different noble gas atoms: neon, argon, and kryp-
ton. To describe the dynamics of the atom (using the 
symmetry in the spin and in the magnetic quantum 
number) only 4, 7, and 13 independent TDKS orbitals 
are used for Ne, Ar, and Kr, respectively. The radial 
numerical grid has Nr=104 nodes and the maximum 
value of the orbital angular momentum is lmax =512. 

As one can see from the Table, the usage of l and r 
parallelisms inside one socket leads to a multiple de-
crease of propagation time. The increase of the perfor-
mance approximately equals to the number of cores in 
the socket (which is 10 on the used system). 

 

Atom 
One-step calculation time (s) 

single core 
(no parallelism) 

single socket 
(r,l parallelism) 

cluster 
(n,r,l parallelism) 

Ne   26.6   3.31   1.22  
Ar   46.48   5.86   1.32  
Kr   113.74   16.12   1.5  

The one-time-step propagation time for three atoms: Ne, 
Ar, and Kr. The first column shows the result for the 

single-CPU (parallelization-free) calculation. The sec-
ond column is propagation time for 10 cores of single 

processor with the parallelization of operators (18) and 
(19). The third column shows the propagation time with 
the additional parallelization in orbitals. It is computed 
on 2 cluster nodes for Ne, 4 nodes for Ar, and 7 nodes 

for Kr (each node has 20 cores in total) 
At the same time, the efficiency of n parallelism 

strongly depends on the speed of data transfer between 
cluster nodes, on the number of sockets on each node, 
and on the number of independent orbitals in an atom. 
For the used computer cluster with 2 sockets on each 
node the increase of the performance is 2.7 for Ne atom, 
4.4 for Ar, and 10.7 for Kr. The one-step propagation 
time for different atomic systems is approximately the 
same (1.2…1.5 s), which is associated with almost 
complete parallelization in orbitals. 

It should be noted, however, that in the considered 
example the number of numerical grid nodes Nr is fixed. 
At the same time, when solving some physical problem 
with the use of TDKS equations, it is necessary to re-
duce the coordinate step near the nucleus as the nuclear 
charge increases in order to ensure high accuracy of 
calculations. Moreover, it is necessary also to decrease 
the time step t∆  to resolve the natural frequencies of the 
lowest orbitals [22]. This leads to a rather significant 
decrease in the speed of numerical simulation with the 
increase of the atom nuclear charge, which will be 
demonstrated in the examples of calculation below. 

2.3. EXAMPLES OF CALCULATION 

In order to test the developed computational code, 
we consider neon, argon, and krypton atoms interacting 
with a few-cycle laser pulse with the electric field hav-
ing the sine-squared envelope located at pt t≤≤0 :  
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00 ttEtA
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Here, E0 is the peak amplitude of the electric field, 
corresponding to the peak intensity 14103 ⋅  W/cm2, 

0.0570 ≈ω  au is the carrier frequency, corresponding to 
the wavelength 800 nm, and 7.14≈pτ  fs corresponds to 
two cycles at the full-width at half maximum of intensi-
ty. 

Calculations are performed in the spatial region 
max0 rr ≤≤ , where rmax =200 au with the maximum val-

ue of the orbital angular momentum lmax =512. The step 
along the radial coordinate is 0.04=r∆  au for Ne, 

0.02=r∆  au for Ar, and 0.01=r∆  au for Kr, the time 
step is 2102.4= −⋅∆t  au for Ne, 3108= −⋅∆t  au for Ar, and 

3102= −⋅∆t  au for Kr. To absorb waves approaching the 
boundary along r, a three-hump imaginary potential [23] 
with a total width of the absorbing layer labs = 50 is 
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used. To perform the calculations we use 4 sockets/2 
nodes for Ne, 7 sockets/4 nodes for Ar, and 13 sockets/7 
nodes for Kr. The large difference in rrN ∆/= maxr  and 
in the time step t∆  for different atoms leads to a differ-
ence in calculation time which is 5 hours for Ne, 32 
hours for Ar, and 12 days 6 hours for Kr. 

 
The spectra of dipole acceleration excited during inter-

action of Ne (a), Ar (b), and Kr (c) atoms with short 
laser pulse with the wavelength of 800 nm and peak 
intensity of 14103 ⋅  W/cm2. The dashed line indicates 
classical cutoff of frequency ppс UI 3.17+=ω , where 

pI  is the ionization potential of atom and pU  is the 
maximum electron ponderomotive energy 

The squared modulus of the Fourier spectrum of the 
dipole acceleration is shown in Figure. As can be seen 
from the Figure, the spectrum for Ne, Ar, and Kr con-
tains a high-frequency part lying in the vacuum ultravio-
let range, which is associated with rescattering of the 
photoelectrons on the parent ion [2 - 8]. The shape of 
the spectrum depends strongly on the type of atom. 
With increasing ionization potential pI  ( =pI 13.99 eV 
for Kr, 15.76 eV for Ar, and 21.55 eV for Ne), the max-
imum energy of the generated harmonics increases ac-
cording to the well-known formula for the plateau cutoff 
position ppс UI 3.17+=ω , where pU  is the maximum 
electron ponderomotive energy [2, 3]. At the same time 
the spectral intensity decreases with increasing of ioni-
zation potential, since ionization probability of the atom 
decreases. The high-frequency spectrum for the case of 
Ar contains a minimum located approximately at 51 eV. 
This minimum is called Cooper minimum and is oc-
curred due to the interference of two electron recombi-
nation channels in the ground state: ps →  and pd →  
[6, 24]. The minimum position obtained in the presented 
calculation is in good agreement with the results of ex-

periments on the high harmonics generation in Ar [24], 
as well as with known results of numerical calculations 
using the time-dependent density functional theory [18], 
which confirms the high accuracy of the developed 
code. The Cooper minimum for Kr is not observed in 
Figure since it is located at 80 eV [25] that is higher 
than the cutoff frequency ωc for the considered parame-
ters of the laser pulse. 

CONCLUSIONS 
The parallel program code has been developed for 

the numerical solution of the time-dependent Kohn-
Sham equations for ab initio modeling of the evolution 
of many-electron atoms during the interaction with an 
intense laser field. The solution algorithm is based on 
the decomposition of the wave functions of the Kohn-
Sham orbitals and the potential energy into spherical 
harmonics. The high accuracy of the program is demon-
strated by the example of calculating the spectrum of a 
high-frequency electron current excited during ioniza-
tion of noble gas atoms by a few-cycle laser pulse. It is 
shown that the use of parallelization between the nodes 
of modern computer clusters and between the CPUs of 
individual socket makes it possible to perform calcula-
tions for typical parameters of laser pulses in a relative-
ly small time from several hours to several days depend-
ing on the atomic system under consideration. 
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КВАНТОВО-МЕХАНИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ 
МНОГОЭЛЕКТРОННЫХ КВАНТОВЫХ СИСТЕМ  

С ИОНИЗИРУЮЩИМИ ЛАЗЕРНЫМИ ИМПУЛЬСАМИ 
А.А. Романов, А.А. Силаев, Д.А. Смирнова, Т.С. Саранцева, А.А. Минина, М.В. Фролов, Н.В. Введенский 

Разрабатывается параллельный программный код для численного моделирования взаимодействия интен-
сивных лазерных импульсов с многоэлектронными атомами на основе нестационарного метода функциона-
ла плотности. Показывается, что использование современных многопроцессорных вычислительных класте-
ров позволяет решить нестационарные уравнения Кона-Шэма для широкого класса атомов за относительно 
небольшое время, определяемое параметрами лазерного импульса и электронной конфигурацией атома. Де-
монстрация работы численного кода представлена на примере расчета спектра высокочастотного электрон-
ного тока, возбуждаемого при ионизации атомов инертных газов коротким лазерным импульсом. 

КВАНТОВО-МЕХАНІЧНЕ МОДЕЛЮВАННЯ ВЗАЄМОДІЇ БАГАТОЕЛЕКТРОННИХ КВАНТОВИХ 
СИСТЕМ З ІОНІЗУЮЧИМИ ЛАЗЕРНИМИ ІМПУЛЬСАМИ 

А.А. Романов, А.А. Силаєв, Д.А. Смирнова, Т.С. Саранцева, А.А. Мініна, М.В. Фролов, Н.В. Введенський 
Розробляється паралельний програмний код для чисельного моделювання взаємодії інтенсивних лазер-

них імпульсів з багатоелектронними атомами на основі нестаціонарного методу функціонала щільності. По-
казується, що використання сучасних багатопроцесорних обчислювальних кластерів дозволяє розв’язати 
нестаціонарні рівняння Кона-Шема для широкого класу атомів за відносно невеликий час, що визначається 
параметрами лазерного імпульсу і електронною конфігурацією атома. Демонстрація роботи чисельного коду 
представлена на прикладі розрахунку спектра високочастотного електронного струму, що збуджується при 
іонізації атомів інертних газів коротким лазерним імпульсом. 
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