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Electromagnetic characteristics of TM modes of a coaxial gyrotron cavity with a corrugated inner conductor are
investigated. Coupled-mode method based on re-expansion of the cavity fields in terms of the Gegenbauer polyno-
mials is applied to reduce the computation time required for solving the eigenvalue problem with desired accuracy.
Dispersion equation is obtained for calculating the eigenvalues of the TM modes. For these modes, transverse field
distribution is investigated. Convergence of computations is shown for cavity eigenvalues and eigenfields.
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INTRODUCTION

Nowadays gyrotrons are the most powerful sources
of continuous-wave (CW) millimeter radiation [1].
Among their applications, one of the most important is
electron-cyclotron heating of magnetically confined
plasma in controlled thermonuclear fusion devices. In
particular, a number of 170 GHz MW-class CW gyro-
trons are now under development worldwide for use in
the heating system of the International Thermonuclear
Experimental Reactor (ITER).

The key gyrotron performances are the frequency
and the output power. The frequency of 170 GHz is
required for ITER, while the output power of an indi-
vidual gyrotron should be as high as possible to reduce
both the complexity and the cost of the gyrotron-based
heating system. At present, the ITER-relevant 170 GHz
CW gyrotrons with conventional cylindrical cavities are
able to produce up to 1.2 MW of the output power [2].
However, further increase in their power is limited due
to interrelated problems of mode competition and ther-
mal cavity loading. Insertion of corrugated coaxial con-
ductor into gyrotron cavity can alleviate these problems.
Owing to this, the record-breaking power of 2.2 MW [3]
has been recently achieved with the 170-GHz coaxial
cavity gyrotron operating at short pulses. Its cavity is
depicted schematically in Fig. 1.
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Fig. 1. The cavity of the 170-GHz 2-MW coaxial
gyrotron [3] (d = 0.044 cm, ¢ /g5 = 0.5,
number of corrugations equals 75)

It is clear that the corrugated conductor adds com-
plexity to the transverse cross-section of the gyrotron
cavity and thus makes its electromagnetic analysis more
difficult. The main difficulty consists in the coupling [3]
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arising between different azimuthal modes due to the
corrugations. Because of this, the electromagnetic anal-
ysis of a gyrotron cavity must involve a large number of
these modes to ensure high accuracy of the computation
for the cavity eigenfrequencies and eigenfields.

There are several approaches to this analysis. The
simplest and the most popular one is the surface imped-
ance model [4]. It is a single-mode method, which treats
corrugated coaxial insert as a smooth rod with uniform
effective surface impedance. The validity of this method
requires the number of corrugations to be large enough.
Otherwise it may fail due to the strong coupling be-
tween azimuthal modes.

A rigorous approach to the electromagnetic analysis
of a coaxial gyrotron cavity with corrugated insert is the
method of singular integral equations (SIE) [5, 6]. This
method is advantageous in that it takes into account the
complete infinite set of coupled azimuthal modes. Ow-
ing to this, the resulting eigenfields converge uniformly
everywhere inside the cavity, including regions near the
corrugation edges. The chief shortcoming of SIE is that
it is associated with time-consuming numerical compu-
tations. For this reason, it can be used as a checking
numerical tool, but is hardly feasible for gyrotron design
and optimization studies.

Compared to SIE, another coupled-mode approach
known as space harmonics method (SHM) [4, 7] is sim-
pler, but still rather accurate. It considers truncated
number of coupled azimuthal modes. On the one hand,
such simplification makes SHM suitable for electro-
magnetic analysis of various complex microwave struc-
tures. On the other hand, it represents an obvious draw-
back, which can lead [8] to inconsistency between the
computations of the cavity eigenfields and the well-
known Meixner’s edge condition [9]. As a result, these
computations may suffer from poor convergence and
Gibbs phenomenon.

To correct this situation, the cavity eigenfields at the
corrugation (groove) aperture can be re-expanded in
terms of the orthogonal functions satisfying Meixner’s
edge condition. Gegenbauer polynomials (GP) can be
used as such functions. This has been demonstrated in a
number of investigations devoted to the guiding struc-
tures for electromagnetic [10, 11] and acoustic [12, 13]
waves. For normal TE electromagnetic modes of the
coaxial gyrotron cavity with corrugated insert, the re-
expansion method (or GP method) was successfully
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used in [8]. In gyrotrons, such modes are the operating
and the competing modes.

However, the gyrotron cavity (Fig. 1) is longitudi-
nally nonuniform. Therefore, TE operating and compet-
ing cavity modes can be converted partially into TM
modes [14, 15]. This explains the importance of the
electromagnetic analysis for normal TM modes of the
coaxial gyrotron cavity with corrugated insert. In [6]
and [7] this analysis has been performed on the basis of
SIE and SHM methods, respectively. In this study, the
GP method is used for the same purpose.

1. MATHEMATICAL MODEL

Consider TM mode of the dielectric-filled coaxial
gyrotron cavity shown in Fig. 1. The cavity has the
smooth outer wall of the radius Ry(z) and the corrugat-

ed insert with the radius R;(z) and the groove depth d.

It is well known that in the cavity region filled with die-
lectric of permittivity ¢ the electromagnetic field of TM
mode is expressed in terms of a single membrane func-
tion @ as

ik, 0D

E =ik, 2 g, =M g 2
r oo (1)
Brz_ﬂaﬂ’ sziéka;(), B, =0,
r oo or

where k, and k, =,/&? k2 are the longitudinal and the

transverse wave numbers, respectively, k = o/c, w is the

wave frequency. Hereinafter the phase factor e' i(k;2-at)

is omitted.
The membrane function @ satisfies the Helmholtz

equation:
(A +Kk2)p =0, )
with the Dirichlet boundary condition:
@[, =0, ©)

where C is the contour of transverse cross section of the
gyrotron cavity.

Inside the cross-section area it is possible to intro-
duce two adjacent regions, one for the waveguide chan-
nel (R <r<R,) and another for the grooves

(R —d <r<R;). For generality, the waveguide channel

and the grooves are assumed to be filled with different
dielectrics of permittivity ¢; and &,, respectively. In view
of the Dirichlet boundary conditions (3), the membrane
function in the waveguide channel (®,) and inside the
grooves (d,) can be expanded into series of space Bloch
and Fourier harmonics, respectively. Thus we have

@ = > A (e, Ri<r <R
i (4
@2_2x|g, sm(§|(¢+ ) D R-d<r<R
I=1
where
Z, 1k
fn(r)z—k"l( ur) , k, =m+nN,
Zy 1(kiaR;)
B Z§|2(kJ_2r) o
ar)=-""""5 6 =—,
Zg, 2 (ku R ) oL
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To account for the field singularity near the corruga-
tion edges, we introduce new function F(p)

=F(p), ©)

_ = Flo).

The function F(y) is subject to the Dirichlet bounda-
ry conditions (3) and the Meixner’s edge condition [9].
The last-mentioned condition implies the finite magni-
tude of the electromagnetic field energy stored in any
finite volume near the edge. For TM modes this results
in the following field singularity:
-1

E,~p

E,~p
where p is the distance to the edge. In view of (6), F(p)

can be re-expanded as

orl-(2] Sl o

where P are the Gegenbauer polynomials, which are
orthogonal on the interval (_ w%‘w%) for o=7+1/2,

R)
Ry)'
—-d

EZl|r=Ri = EZ2|r=Ri

2 2
I’ZRi r

: (6)

(Nl+1) is the number of Gegenbauer polynomials un-

der consideration. It can be shown [16] that r = 2/3 for
the wedge-shaped corrugations under consideration.

From (3), (5), (6), and the orthogonality conditions
for the Bloch (Fourier) harmonics follows the relation-
ship between A, (X)) and a,. Using these relationships,
the continuity condition for B,

81& y
or R,

and the orthogonal properties of GP, we obtain the sys-
tem of equations for the unknown ay:

N, N;
ZZakdjk =0, 9)

k=0 j=0
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where f,=f, (R), g,=9, (R)).
1

I T

-1

— 6@2
=g, —2|
R, or

(8)

jk =

1
2 7
s = [ -2 2 sin(a -+ )R/ 0t
-1
The nontrivial solution of the system of equations
(9) exists, if the determinant of the matrix dj equals
Zero:

det”d i || =0 (10)
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Truncating the infinite sums, we obtain:

2 N3
k= 2 - Z fntnktnj Zglslksip (11)
¢7S kJ-l n=—N J_2 -1

where the number of Bloch and Fourier harmonics un-
der consideration equals (2N,+1) and N3, respectively.
The dispersion equation (10) gives the eigenfre-

quencies o(k,) of TM modes for dielectric-filled co-
axial waveguide with corrugated insert.

2. NUMERICAL RESULTS

The calculations are performed for the TM3, 19 mode
of the coaxial cavity of the 2.2-MW 170-GHz gyrotron
[3]. For this gyrotron, ultra-high vacuum is maintained
under actual experimental conditions. Thus we can as-

sume g, =g=1and k,,, =k, . Fig. 2 shows the varia-
tion of the eigenvalue » =k R, of the TMas419 mode

along the cavity axis. For comparison purpose, the al-
ternative results of SHM are also presented. As can be
seen from Fig. 2,a, the computations of the GP method
(N1, N2, N3g) and SHM (N,, Ns) are in close agreement.
This agreement is improved with increase in the number
of initial (Bloch and Fourier) and new (Gegenbauer pol-
ynomials) basic functions (Fig. 2,b).
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Fig. 2. The eigenvalue of TM3, 19 as a function of the
axial coordinate z: a — the full length of the cavity;
b — the region near the cavity entrance

Despite this, there is a notable distinction between
the GP method and SHM. It is in the resulting size of
the determinant involved in the dispersion equation. For
SHM (see (11)) this size equals the total number of the
Bloch and the Fourier harmonics (2N, +1)+ N, while it

equals (N, +1) for the GP method. Our computations

show that N; can be selected ten times smaller than N,
and N; to guarantee an excellent agreement of the GP
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method and SHM. For this reason, among these two
methods, the GP method more rarely suffers from the
problem of large-size matrices and features much small-
er computation time.

The convergence of the GP method can be seen from
Fig. 3, which shows the dependences of the TMag 1o
mode eigenvalue (Fig. 3,a) and the relative error of cal-
culations (Fig. 3,b) on number of Gegenbauer polyno-
mials. The relative error is evaluated as:
Z(N; +1)- 2(N,) ,

2(N,)
where N; is related to N, and N; by the equation
N, = Ny =10(N; +1).

It is easy to see that the relative error does not ex-
ceed 7-10°, even though the dispersion equation (10)
includes a single-element matrix (N; +1=1). Thus the
GP method provides very good convergence for the
eigenvalues of cavity modes.

Despite this, some numerical errors can be presented
in the cavity eigenfields. This can be seen from Fig. 4,
which shows the distribution of the membrane functions
@, and @, along the groove aperture. Ideally, these
functions must be identical. However, in actual practice
there is a certain mismatch between them. This mis-
match is most evident near the corrugation edges

i(p% and can be reduced with increase in Ny, N, and
Ns (Fig. 4,b,c).
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Fig. 3. The eigenvalue (a) and relative error

of calculations (b) as a function of the GP number

The form of the membrane function of the TMa4 19
mode shown in Fig. 4,c is similar to that obtained by the
rigorous SIE technique in [6] (see Fig. 4 in [6]). It is
consistent with the required boundary condition (3) and
the Meixner’s edge condition [9].
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Fig. 4. The dependence of membrane function
on azimuthal angle at the aperture of the groove:
a— GP method (0, 2, 2); b — GP method (3, 10, 10);
¢ — GP method (10, 100, 100)

The absolute value of the longitudinal electric field
|E, | of the TMa, 10 mode is shown in Fig. 5 for the input

transverse cross-section of the gyrotron cavity. From
this figure, the number 19 of the radial field variations
can be clearly seen. Such field distribution agrees close-
ly with the calculations [6] based on SIE technique.

It can be seen from Fig. 5 that the corrugations have
a slight effect on the mode field. To demonstrate this
effect we consider the cavity region in the vicinity of
isolated groove. Fig. 6 shows the distribution of |E,|

over such region.

Fig. 6,a corresponds to the case when the resultant
matrix of (10) consists of a single element (N; +1=1).
In this case the field discontinuity is evident at the
boundary between the waveguide channel and the
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groove region. The field mismatch is of the largest value
near the groove edge. It can be reduced with increase in
value of the numbers Ny, N, and N3 (Fig. 6,b). Thus
from Fig. 6 the good convergence of the cavity field can
be clearly seen.
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Fig. 5. The absolute value of the longitudinal electric
field in the cavity entrance for the TM3, ;0 mode
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Fig. 6. The electromagnetic field distribution
in the cavity entrance near the corrugation edge:
a— GP method (0, 2, 2); b — GP method (10, 100, 100)

CONCLUSIONS

The improved method has been applied for calculat-
ing the eigenvalues and the eigenfields of TM modes of
coaxial gyrotron cavity with corrugated inner conductor.
It is well-known that such calculations require matching
the fields of the waveguide channel to those of the
grooves. The former and the later fields are expressed as
series of the Bloch and the Fourier harmonics, respec-
tively. The improvement consists in the re-expansion of
the matched fields in terms of the Gegenbauer polyno-
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mials, which, unlike the Bloch and the Fourier harmon-
ics, satisfy identically the Meixner’s condition on the
corrugation edges.

Owing to this, compared to the Bloch and the Fouri-
er harmonics, the number of the Gegenbauer polynomi-
als can be selected much smaller to guarantee the same
computational accuracy. As a consequence, the size of
the resultant determinant involved in the dispersion
equation can be reduced. It has been found that such
reduction ranges up to 30 times for the TM3419 mode of
the 2.2-MW 170-GHz coaxial cavity gyrotron. This in
turn alleviates the problem of large-size determinants
and diminishes heavily the computation time required
for solving the eigenvalue problem. It has been shown
that for the TM341 mode the eigenvalue and the eigen-
fields converge rapidly with a number of Gegenbauer
polynomials in use.
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3®P®EKTUBHbIA METO/I 9JIEKTPOMATHUTHOI'O AHAJIM3A JJISL TM MOJL PE3OHATOPA
KOAKCHAJIBHOTO THPOTPOHA C TO®PUPOBAHHOU BCTABKOU

T.U. Tkaueea, B.U. Ill]epounun, B.U. Tkauenko

HccnenoBaHbl 5J€KTPOMarHUTHBIE XapakTepucTUku TM Moj B pe30HATOpe KOAKCHaJIbHOTO THPOTPOHA ¢ Todpu-
POBaHHBIM BHYTPESHHHM IPOBOJHUKOM. MeTO/ CBSI3aHHBIX MOJ, OCHOBAaHHBIN Ha IEpepa3ioKEHUH MO B pe30HA-
Tope 1o moarHoMaM [ erenbayspa, MpUMEHEH C IENbI0 CHIDKEHUS BPEMEHH pacueTa dTHX XapaKTePUCTHK ¢ Tpelye-
Moif TouHOCTBIO. [TonydeHo mucrnepcHoHHOE ypaBHEHHE I COOCTBEHHBIX 3HaueHnit TM mox. Jlns 3Tux Mo wc-
CJIeIOBAHO pAaCIpENIeIICHHE TMOJsI B MOMEPEYHOM CEYeHMH pe3oHaTopa. [lokazaHa CXOAMMOCTH BBIUHUCICHHH IS
COOCTBCHHBIX 3HAYCHUI U COOCTBEHHBIX TOJIEH pe30HaTopa.

E®EKTUBHUIN METO/JI EJIEKTPOMATHITHOI'O AHAJI3Y JJ151 TM MOJI PE3OHATOPA
KOAKCIAJIBHOT' O T'TPOTPOHA 3 TO®POBAHOIO BCTABKOIO
T.I. Tkauoea, B.1. Ill]epoinin, B.I. Tkauenko

JlociipkeHo enekTpoMarHiTHi xapakrepuctuku TM Mo B pe30oHaTopi KoakciallbHOTo ripoTpoHa 3 ro)poBaHUM
BHYTPIIIHIM TPOBiTHUKOM. MeTo[ 3B'13aHUX MO/, 3aCHOBaHMI Ha MEPEepO3KIaaHHi O B PE30HATOPI 3a MOTIHO-
Mamu ['erenbayepa, 3acTOCOBaHO 3 METOIO 3MEHIIEHHS PO3PaXyHKOBOI'O Yacy LMX XapaKTepHCTHK 3 HEOOXiTHOIO
To4HicTI0. OTpUMAHO AUCHEPCiiiHe PIBHSIHHS Ui BIACHUX 3HadeHb TM moa. st uX MOJ JOCHIPKEHO PO3MOALT
MoJIsl B MOIEPEYHOMY Tepepi3i pe3oHatopa. [TokazaHa 301KHICTE PO3PaxyHKIB Ui BIACHUX 3HAYCHb Ta BIACHUX
IOJIiB PE30HATOPA.
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