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WAKEFIELD EXCITATION BY A LASER PULSE  
IN A DIELECTRIC MEDIUM 
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The process of Cherenkov electromagnetic field excitation by а laser pulse in the dielectric waveguide is investi-

gated. Nonlinear electric polarization in an isotropic dielectric medium and, accordingly, polarization charges and 
currents induced by ponderomotive force of the laser pulse are determined. Spatial structure of the excited wakefield 
in a dielectric waveguide is obtained and investigated. It is shown, that the wakefield consists of polarization poten-
tial electric field, caused by the nonlinear polarization of medium, and a set of eigen electromagnetic waves of the 
dielectric waveguide. 
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INTRODUCTION 
A charged particle moving in a dielectric medium 

with a velocity above light speed radiates electromag-
netic waves called Cherenkov radiation [1, 2]. The elec-
tric field of a moving charge polarizes the atoms (mole-
cules) of the dielectric medium, which in turn coherent-
ly re-emit electromagnetic waves. 

A similar effect occurs when a short high-power la-
ser pulse propagates in a dielectric [3, 4]. In the linear 
approximation in the field, the effect of polarization of 
the medium at the field frequency only leads to a change 
in the phase and group velocities of the laser pulse. In 
the nonlinear approximation, the pulsed ponderomotive 
force that propagates in a medium with the velocity 
equal to the group velocity of the laser pulse also acts 
quadratically with respect to the field on the coupled 
electrons of the dielectric medium. This force, in turn, 
leads to the polarization of the dielectric medium. When 
the Cherenkov synchronism condition between the pon-
deromotive force of the laser pulse and the slow elec-
tromagnetic waves of the medium is satisfied, it causes 
the excitation of electromagnetic Cherenkov radiation. 

Note that in [4] proposed interpretation of the Ce-
renkov radiation of the laser pulse in a dielectric medi-
um as an effect of three-wave decay process. It's about 
decay of an electromagnetic wave belonging to a laser 
wave packet and having frequency 0( )kω



, ( 0k


 is wave 

vector), to a satellite with a lower frequency 0( )k kω −
 

 
and an electromagnetic Cerenkov wave with a frequen-
cy ( )ch kω



. For such process, the condition of frequency 
synchronism of the indicated waves has the form 

0 0( ) ( ) ( )chk k k kω ω ω= − +
   

. 

Assuming that 0k k<<
 

, this condition implies the 

condition for Cherenkov radiation of a laser pulse in a 
dielectric medium 

0
0

0

( )
( ) ( )ch g

d k
k k kv k

dk
ω

ω = =

d

dddd  

d

d . 

Thus, the effect of Cherenkov radiation of a laser 
pulse is quite similar to the Cherenkov radiation of a 
charged particle with the only difference that the role of 
the electric field of a charged particle is played by the 
ponderomotive force of a laser pulse. 

The wake Cherenkov radiation of a powerful ultra-
short laser pulse in a dielectric medium can be used to 
accelerate charged particles like a analogous method of 
laser wakefield acceleration in a plasma [5]. 

In this paper we formulate a system of nonlinear 
equations of macroscopic electrodynamics that de-
scribes the process of excitation of Cerenkov radiation 
by a laser pulse in a dielectric medium. On the basis of 
these equations, the effect of Cherenkov radiation of a 
laser pulse in a dielectric waveguide (optical fiber) will 
be investigated. 

1. FORMULATION OF THE PROBLEM. 
BASIC EQUATIONS 

In a homogeneous dielectric medium, a laser pulse 
(wave packet) propagates with components of the elec-
tromagnetic field 

( ) ( ) i
L 0

1E r, t E r, t e c.с.
2

ψ= +
 

  , 

( ) ( ) i
L 0

0

1H r, t rot E r, t e c.с.
2ik

ψ = + 
 

  ,      (1) 

Lkr tψ = −ω


 , k


 is wave vector, 0 Lk c= ω , Lω  is the 

carrier frequency of the laser pulse, ( )0E r, t


  is slowly 
changing in the space and time envelope of the laser 
pulse. 

Under the action of the ponderomotive force (the 
HF-pressure force) quadratic in the laser field (1), a po-
larization, slow in the scale of the carrier frequency, 
arises in the dielectric, which in turn will be the source 
of the electromagnetic field excited by the laser pulse 
(i.e. Cherenkov radiation). 

The system of Maxwell equations describing the 
electromagnetic field excited by the polarization in-
duced by the laser pulse has the form 

1 HrotE
c t
∂

= −
∂





, 1 E 4 ProtH
c t c t
∂ π ∂

= +
∂ ∂

 



, 

divE 4 divP= − π
dd

, divH 0=
d

,                 (2) 
P


 is vector of electric polarization. 

2. DETERMINATION OF NONLINEAR 
POLARIZATION 

The next step of the theory is the determination of 
the polarization P



caused by the action on certain atoms 
of the condensed dielectric medium both an electric 
field which is in the Maxwell equations (2) and the pon-
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deromotive force from side of the laser pulse (1). For 
this, a simple but adequate model of an elementary di-
pole located in the crystal lattice point is necessary. 
Note that beginning from the microwave range of radia-
tion wavelengths and moreover in the optical range, the 
orientational (dipole) and induced ionic polarization 
mechanisms do not play an appreciable role due to the 
high inertia of the ions. In these wavelength ranges, the 
induced electron polarization of atoms is dominant [6]. 
Electronic polarization is due to the displacement of the 
shell from the bound electrons of the atom relatively to 
the nucleus under the action of the electric field. 

The induced electronic polarization can be described 
in the framework of the following model [6]. The atom 
is represented as a point nucleus in a charge Z|e|, sur-
rounded by a smeared electron cloud with the charge − 
Z|e|. The electron cloud will be considered as a spheri-
cally symmetric homogeneous charged region of radius 
R0. When the electron cloud is shifted as a whole with 
respect to the nucleus, the dipole moment of the atom 
p eZr= −
   arises, where r  is the radius vector of the 
center of the electron cloud. Accordingly, the following 
dipole returning force will act on the electron cloud [7] 

( )2

e 3
0

Ze
F r

R
= −



 ,        (3) 

which leads to harmonic dipole oscillations of an atom 
with eigen frequency 

2

0 3
0

Ze
mR

ω = .        (4) 

In a condensed medium, each atom is in a local (act-
ing) electric field locE



, which can differ greatly from 

the macroscopic field E


 contained in Maxwell's equa-
tions (1). The local electric field includes both the ex-
ternal field and the total electric field of the induced 
dipoles surrounding the taken atom. In a crystalline me-
dium with a cubic crystal lattice, the local electric field 
is described by the Lorentz formula [6 - 8] 

loc
4E E P
3
π

= +
   .                        (5) 

We note that the Lorentz formula is exact for a con-
densed dielectric medium with a cubic lattice. However, 
it qualitatively correctly describes the local electric field 
for more complex crystal structures and even for liquid 
structures [9]. Under the influence of external high-
frequency fields, dipole oscillators with eigen frequency 
(4) will perform forced oscillations. The excitation 
equation for the dipole oscillations of an atom can be 
written as follows. Under the action of a ponderomotive 
force quadratic in the laser field (1) (HF pressure force), 
a polarization, slow in the carrier frequency, arises in a 
dielectric medium, which in turn will be the source of 
the electromagnetic radiation of the laser pulse field, in 
particular, the Cherenkov radiation. 

So the excitation equation for the dipole oscillations 
of an atom can be written as follows 

( )
2

2 loc
0 L L2

loc

d r e 1r E r, t vH
m cdt

e 1E vH .
m c

  + ω = − + −   
  − +   

d

dd

dd  d

dd

d

      (6) 

Here 

( ) ( )loc i
L 0 L

1 4E r, t E r, t e c.с. P
2 3

ψ π
= + +

  

   

is the local electric field from the side of the laser pulse, 

LP


 is HF-polarization of the dielectric on the carrier 

frequency, induced by the laser pulse, ( )locE r, t


  is a 
local electric field (5), which includes a slow field 
which excited by the ponderomotive force and con-
tained in Maxwell's equations (2). 

An approximate solution of equation (6) will be 
found in the form of a sum of the displacement ( )Lr t  
rapidly oscillating at the carrier frequency of the laser 
pulse and the slow displacement ( )cr t of the center of 
the electron cloud relatively to the atomic nucleus 

( ) ( ) ( )L cr t r t r t= +
   . 

The rapidly oscillating displacement ( )Lr t  is de-
scribed by the linear equation of motion of the oscillator 

( ) ( )L
2

i kr t2L
0 L 0 L2

d r e e 4r E r, t e c.с. P .
2m m 3dt

−ω π
+ ω = − + −

d

d

d

dd

dd  (7) 

First of all, we determine the HF polarization. Tak-
ing into account the definition the polarization of unit 
volume  

P ZeNr= −


 ,                                (8) 
where N is the number of atoms per unit volume of the 
dielectric, from (7) we obtain the equation for the polar-
ization LP



 in the field of the laser pulse (1) 

( ) c

2
i2L

d L 0 c

2

2

d P 1P E r , t e c.с.
2dt

Ze N
m

ψ + ω − = + 

d

dd

d ,   (9) 

c ckr tψ = −ω


 , 
2

2 2 2 2
0

4/ 3,d p p
Ze N
m

pω ω ω ω= − = −  plasma 

frequency. The solution of this equation is easily found  

L LP E= χ
 

,       (10) 

L

L

N
41 N
3

α
χ =

π
− α

           (11) 

is electrical susceptibility,  

L 2 2
о L

2Ze 1
m

α =
ω −ω

 

is the polarizability of an individual atom. In the qua-
sistatic approximation 2 2

0 Lω ω>> , the expression for the 
polarizability is simplified and does not depend on the 
frequency 

2

L 2
0

Ze
m

α =
ω

.                              (12) 

Taking into account that ( )L L 1 2χ = ε − π , where  
2
p

L L 2 2
d

( ), ( ) 1
ω

ε ≡ ε ω ε ω = +
ω −ω

 

is the permittivity of the medium, the relation (11) im-
plies the well-known Clausius-Mosotti formula [5, 6] 

1 4 N
2 3

ε − π
= α

ε +
,       (13) 

which establishes a relationship between the dielectric 
permittivity and the polarizability of an individual atom. 
For a dielectric medium with a cubic lattice, taking into 
account the expression obtained for the polarization 
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vector (10), we find the following expression for the 
local electric field of the laser pulse. 

( )ciloc L
L 0

2 1E E e c.с.
23

ψe +
= +

 

.    (14) 

Accordingly, from the equation of motion (11) we 
obtain expressions for high-frequency displacement 
( )Lr t  and velocity ( )Lv t  

( ) ( ) ci
L 0 c

1r t a E r , t e c.с.
2

ψ = − + 


  ,          (15) 

( ) ( ) ci
L 0 c

1v t a iE r , t e c.с.
2

ψ = ω + 


 , 

L
2 2
0 L

e 1
m 3

2
a

e +
=

ω −ω
. 

Let us now formulate the equation for the slow dis-
placement ( )cr t  of a dipole oscillator. Preserving on the 
right-hand side of Eq. (6) only quadratic terms with re-
spect to the laser field, we obtain the equation 

( )
2

2c
0 c2

d r e 4r E r, t P
m 3dt

π + ω = − + −  

d

dd

dd    

( )L
L L L L

2e 1r E v H
m c3

e +  − ∇  +
 

 

  .     (16) 

Angular brackets mean averaging over HF oscilla-
tions. Performing the averaging procedure with taking 
into account the expressions for the HF quantities (14), 
(15) entering in (16), we obtain the following equation 

2
2c
0 c2

d r e 4 2r E P
m 3 4mZ

F
3dt

π α e + + ω = − + +  

d

d

d

dd

,  (17) 

where  

( ) ( )2 *L *
0 0 0 0 0F E E E

3
1

E E
ε −

∇ ∇ = ∇ + + 
     

.   (18) 

The first term in (18) describes the gradient force of 
HF pressure. The second term occurs only in the case of 
a crystalline medium and is due to the difference be-
tween the local electric field loc

LE


 in the crystal and the 
electric field of the laser pulse. In dielectric media, 
where the acting field coincides with the external field, 
for example, in a gas dielectric, this term is absent. Tak-
ing into account the expression for polarization (8), we 
obtain a material equation for the nonlinear polarization 

2 2
2
d2

d P Ze N eN 2P E F
d 3m 4mt

α e +
+ω = −
d

d dd

.         (19) 

The Maxwell equations (2) together with the equa-
tion for the polarization (19) describe the electromag-
netic Cerenkov radiation of a laser pulse in a condensed 
dielectric medium. 

We solve this system of equations by the Fourier 
transform  

( , ) ( ) , ( , ) ( )i t i tE r t E r e d P r t P r e dω ω
ω ωω ω

∞ ∞
− −

−∞ −∞

= =∫ ∫
dddd  

dd  , 

where ( )E rω



, ( )P rω



  are Fourier components of the 
corresponding quantities. For example  

1( ) ( , ) .
2

i tE r E r t e dtω
ω π

∞

−∞

= ∫
dd

d  

From the material equation (19) we find the expres-
sion for the Fourier component of the polarization vector 

( ) 1
,

4
chP E Fω ω ω
ε ω

µ
π
−

= −
  

 

where 
81 ( )
3( ) ,

41 ( )
3

ch

ch

ch

N

N

π α ω
ε ω

π α ω

+
=

−
                 (20) 

2

2 2 2
0

1 1( ) , ( 1)( ( ) 1),
64ch L ch

Ze
m ZeN

α ω mee   ω
ω ω π

= = − −
−

Fω −


Fourier component of the quadratic dependence 
(18) of the ponderomotive force on the electric field 
strength of the laser pulse. Accordingly, the system of 
Maxwell equations for the Fourier components of the 
electromagnetic field can be represented in the form 

0 0
4( ) ,ch polrotH ik E j rotE ik H
cω ω ω ω ω
pε ω= − + = +

   


 

( ) 4 , 0ch poldiv E divHω ω ωε ω pρ= =
dd

 .        (21) 
The Fourier components of the polarization currents 

and charges induced in the dielectric by the ponderomo-
tive force of the laser pulse are described by expressions 

,pol polj i F divFω ω ω ωωµ ρ µ= =
dd

d

.           (22) 
The obtained working system of equations makes it 

possible to investigate Cherenkov radiation in a variety 
of physical situations: a model of an infinite dielectric 
medium, dielectric waveguides and resonators.  

3. CHERENKOV RADIATION OF A LASER 
PULSE IN A DIELECTRIC WAVEGUIDE 
Let us consider a dielectric waveguide made in the 

form of a homogeneous dielectric cylinder whose lateral 
surface is covered with an ideally conducting metal 
film. Along the axis of the waveguide, a circularly po-
larized laser pulse propagates with the components of 
the electric field 

( )0
0x g

I
E r, t z v

2
= ψ − , 0y 0xE iE= , 

( ) ( ) 1 2

gR r T t z v ψ = −  .                (23) 

The function ( )R r  describes the radial intensity pro-

file of the laser pulse, 
2

0I E=


, ( ) ( )R 0 1, R r b 0= = = , 
b is the radius of the waveguide, the function ( )T τ  de-
scribes the longitudinal profile, / ,gt z vt = −  gv  is the group 
velocity, ( ) 1,maxT τ =  0I  is the maximum intensity. 

From the system of Maxwell's equations (21) fol-
lows the wave equation for the longitudinal Fourier 
component of the Cherenkov electric field 

pol2 0
z 0 ch z pol

ch

k1E k ( )E 4 i j
( ) z c

ω
ω ω ω

∂ρ 
∆ + ε ω = p − ε ω ∂ 

.(24) 

The Fourier components of the polarization charges 
and currents are determined by expressions (22). For a 
circularly polarized laser pulse (23), these expressions 
take the forms  

( ) ( )L
pol

1
I r, I r,

6ω ω ⊥ ω

ε − r = µ ∆ τ + ∆ τ  
,    (25) 
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( )zpolj i I r,
zω ω

∂
= ωµ τ

∂
.                (26) 

Let’s introduce the function  
( )

z ch z

I r,
D ( )E 4

z
ω

ω

∂ τ
= ε ω − πµ

∂
.          (27) 

For this function, instead of equation (24), taking in-
to account the relations (25), (26), we obtain the equa-
tion 

( )2 L
z 0 ch z

I r,1
D k ( )D 4

6 z
ω

ω ω ⊥

∂ τε −
D + ε ω = πµ D

∂
.  (28) 

The function zD ω  has a simple physical meaning 
and is a longitudinal Fourier component of the electric 
induction z z zD E 4 P= + π  with taking into account the 
polarization (20), caused by the action of the pondero-
motive force of the laser pulse. 

The longitudinal component of the electrical induc-
tion should be found in the form of a series of Bessel 
functions 

( )z n 0 n
n 0

rD C z, t J
b

∞

ω
=

 = λ 
 

∑ ,      (29) 

where nλ  are roots of the Bessel function ( )0J x . For 
the coefficients nC  of the expansion from (28) we ob-
tain the equation 

g

2 2
ik z2n L n n

z n g 02 2
n

d C 1
k ( )C 4 ik I T e

6 Ndz b ω

e − λ α
+ ω = − π µ . (30) 

Here 
2 2

2 2 2
0 12, ( ) ( ) , ( )

2
n

g z ch n n
g

bk k k N J
v b

λω ω ε ω λ= = − = , 

( )
b

n 0 n
0

rR r J rdr
b

 α = λ 
 ∫ , 1 ( )

2
iT T e dωτ

ω τ τ
π

∞

−∞

= ∫ . 

In the considered case of an infinite dielectric wave-
guide in the longitudinal direction, the forced solution 
of Eq. (30) has the form 

[ ]( ) 1
( )

gik zn
n ch

n

C i T eω
ρ

ω e ω
ω

= − Π −
∆

, 

wherе 
2

0
2

( 1)
,

16
L n n

n
g n

I
v ZeN Nb
e λ α

ρ
π

−
Π = = , 

2
2 2
0 2( ) ( ) n

n ch gk k
b
λ

ω ε ω∆ = − − . 

Taking relations (27) and (29) into account, we ob-
tain the following expression for the Fourier component 
of the longitudinal component of the electric field 

( ) ( ) ( , )zE r T G rω ω ω= Π . 
Here 

[ ] [( ) 1
( , ) ( )

( )
gik zch

ch

G r i e R r
e ω

ω
e ω

−
= −  

0

1

( / )1
6 ( )

nL
n

n n

J r bλε
r

ω

∞

=

−
− ∆ 

∑ .                      (31) 

Accordingly, the longitudinal component of the ex-
cited electric field can be represented as a convolution 

0 0 0( , ) ( ) ( , )zE r T G r dτ τ τ τ τ
∞

−∞

= Π −∫ ,           (32) 

wherе 
0( )

0
1( , ) ( , )

2
iG r G r e dω τ ττ τ ω ω

π

∞
− −

−∞

− = ∫        (33) 

is Green's function. The Green's function actually de-
scribes the structure of the wakefield in a dielectric me-
dium excited by a laser pulse with a δ -shaped longitu-
dinal profile of the intensity. 

3.1. CALCULATION OF THE GREEN FUNCTION 
The expression for the Green's function (33), taking 

into account expression (31), is conveniently written as 
follows 

1 2( , ) ( , ) ( , ),G r G r G rϑ ϑ ϑ= +                   (34) 

1 0( , ) ( ) ( )G r R r Sϑ ϑ= ,                     (35) 

2 0
1

1
( , ) ( ) ( ),

6
L

n n n
n

rG r J S
b

ε
Jr  λ J

∞

=

−
= − ∑       (36) 

wherе 

0
( ) 1

( ) ,
2 ( )

i ch

ch

iS d e ωϑ e ω
ϑ ω ω

π e ω

∞
−

−∞

−
= ∫             (37) 

( ) 1
( ) ,

2 ( ) ( )
i ch

n
ch n

iS d e ωϑ e ω
ϑ ω ω

π e ω ω

∞
−

−∞

−
=

∆∫ 0ϑ τ τ= − .(38) 

The expression (21) for the dielectric permittivity 
( )chε ω  can be written in the form 

2 2
0

2 2 2( ) 1 ,
1

p
ch

d

x
x

ω ε
ε ω

ω ω
−

= − ≡
− −

 

where / dx ω ω=  2 2 2
0 / 3d pω ω ω= − , 2 2

0 1 /p dε ω ω= +  is 
static permittivity 0 ( 0)chε ε ω= → . 

The collective frequency of dipole oscillations dω is 
lower than the frequency of an individual atomic dipole 
oscillator. This effect is due to the screening of the field 
of an individual atomic dipole by the total field of the 
set of the similar dipoles surrounding it. 

The integrand in (37) has simple poles 0п iω ω= ± −  
located in the lower half-plane of the complex variable 

ω , 2 2
g p dω ω ω= + −  is the frequency of the eigen lon-

gitudinal oscillations of the dielectric medium, which 
nullifies the dielectric permittivity ( ) 0chε ω = . 

Calculating the residues at these poles, we obtain an 
expression for the integral 0 ( )S ϑ  and, accordingly, for 
the first term of the Green's function 

2
1( , ) ( ) ( ) cos ,p gG r R rϑ ω c ϑ ω ϑ= −          (39) 

here 0( )χ τ τ−  is unit Heaviside function. As for the 
Fourier integral (38), its integrand, in addition to the 
poles listed above, has additional poles ( ) 0n ω∆ = . This 
equation can be given in a more convenient form for 
analysis 

( )( )2 2 2 2
2 2 2 2

1 1( ) ,n chn stn
g g dv

ω ω ω ω n
g ω ω

∆ = − − +
−

 

where
2 2 1(1 ) , / , , ,g g g g chn d chn stn d stnv c x xg β β ω ω n ω−= − = = =  

2 2 2 2 2
0 0

1 1( ) ( ) ,
2 4chn n n nx b y b y y= − + + + +  

2 2 2 2 2
0 0

1 1( ) ( ) ,
2 4stn n n nx b y b y y= + + + +  

2 2
0 0( 1)g gb g b ε= − ,  

2 2
2 2 2

2 2 .n
n g g

d

c
y

b
λ

b g
ω

=  
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The poles 0chn iω ω= ± −  are also located in the 
lower half-plane of the complex variable ω  near the 
real axis. They correspond to the eigen electromagnetic 
waves of the dielectric waveguide, which are in Ceren-
kov synchronism with the laser pulse. Since these poles 
are always real, the cutoff radiation of the laser pulse in 
the dielectric waveguide takes place for all values of the 
group velocity of the laser pulse and the parameters of 
the dielectric waveguide (in our case, the values of the 
static dielectric constant 0ε  and the radius of the wave-
guide b). The frequency range, in which the discrete 
frequencies chnω  of the eigen waves there are, depends 
on the sign of the parameter 0b . If 0 0b > , what mean 
s 0/gv c ε> , then the Cherenkov frequencies are in the 
range 0.d chnω ω> >  If 0 0b <  (this corresponds to 

0/gv c ε< ), then for the Cherenkov frequencies it is 

rightly 0 .d chn d bω ω ω> >  Note that for 0 0b < , it is 

always 0 1.b <  
Besides of the real Cherenkov poles, there is also a 

pair of complex conjugate poles stniω n= ±  in the inte-
grand (38) located on the imaginary axis. These poles 
correspond to a quasi-static electromagnetic field local-
ized in the laser pulse region. Calculating the residues at 
all poles of the integrand (38), we find the second term 
of the Green's function 
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where 

2 2 2
1

( / )
( ) , / , ( ),

/
n n n

g g g chn ch chn
n g n

J r b
r k v

k b
r λ

ω ε ε ω
λ

∞

=

Φ = = ≡
+∑

( )stn ch stniε ε n≡ . 
The series ( )rΦ  can be exactly summed 
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Summing the expressions (39), (40), we obtain the 
final expression for the Green's function 
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The Green's function contains potential monochro-
matic wakefield, caused by the excitation of polarization 
oscillations of the dielectric medium. The electromag-

netic part of the Green's function contains a wakefield in 
the form of a superposition of eigenmodes of a dielec-
tric waveguide, as well as a set of bipolar electromag-
netic pulses. 

3.2. PICTURE OF THE WAKEFIELD EXCITED 
BY A LASER PULSE 

After substituting the Green's function (43) into the 
expression for the total field of the laser pulse in the 
dielectric waveguide (32), we obtain the following ex-
pression for the longitudinal component of the wake-
field of a laser pulse with an arbitrary profile 
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Function 

0 0 0( ) ( ) cos ( )Z T d
τ

ωτ τ ω τ τ τ
−∞

= −∫             (47) 

describes the longitudinal distribution of the wakefield 
polarization field gω ω= , as well as the wakefield elec-
tromagnetic field of the corresponding radial harmonic 

chnω ω=  of the dielectric waveguide. 
Function 

0
0 0 0( ) ( ) ( ) stn

stnX T sign e dn tt n ttttt   
∞

− −

−∞

= −∫       (48) 

describes the longitudinal component of a set of bipolar 
quasi-static electromagnetic pulses. 

For a symmetric laser pulse 
0 0 0( ) ( ) , ( ) 0T T Tτ τ τ= − → ±∞ → , the expression for 

the function (46) can be written as follows 
( ) 2 ( ) cos ( ),stZ T Zωt ω ωt ωt= +



        (49) 
where  

0 0 0
0

( ) ( ) cosT T dω τ ωτ τ
∞

= ∫


. 

Is an amplitude of the Fourier component at the fre-
quency of a function describing the longitudinal profile 
of the intensity of the laser pulse,  

0 0 0( ) ( ) cos ( )stZ T d
t

ωtt  ω ttt 
∞

= − −∫ .        (50) 

Behind the laser pulse 0τ > , the electric field is the 
superposition of electromagnetic monochromatic waves 
and polarization oscillations, and the quasistatic field 
that disappears with distance from the laser pulse 
τ → ∞ . Before the pulse, there is only a quasistatic 
field, that also decreases with distance from the pulse. 

Let us investigate the expression for the electric field 
(44) - (46) for a number of model transverse and longi-
tudinal intensity profiles of the laser pulse. Firstly we 
consider the model longitudinal profile of the laser pulse 
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wherе Lt  is the laser pulse duration. 

For such an impulse, we have 
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The electromagnetic pulse is bipolar, and taking into 
account these expressions for the longitudinal compo-
nent of the electric field excited by the laser pulse, we 
obtain the expression 
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It follows from this expression that the polarization 
electric field, along with a monochromatic wakefield 
wave, contains a solitary pulse whose longitudinal pro-
file completely repeats the electrical polarization profile 
of the dielectric and, accordingly, of the ponderomotive 
force. The width of this pulse ~g Ltt∆  is close to the 
width of the laser pulse and does not depend on the pa-
rameters of the dielectric waveguide. Each radial elec-
tromagnetic harmonic of the dielectric waveguide has 
an analogous structure. In addition, there is a set of elec-
tromagnetic pulses. The width of each of them 

~ 1/stn stnt n∆  is determined by the parameters of the 
dielectric waveguide and does not depend on the dura-
tion of the laser pulse. 

Let us investigate the expression for the electromag-
netic field (44) in the quasistatic approximation 

2 2
dω ω>> . In this approximation, the permittivity 

0~chε ε  is independent of frequency.  
Consider the most interesting case 0 0b >  or 

0/gv c ε> . In this case we have 
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Accordingly, the expression for the electric field 
(51) becomes 
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The width of all electromagnetic pulses is the same 
~ 1/stn stt n∆  and does not depend on the number of the 

radial harmonic. The level of the field of these pulses is 
small. 

Let us now consider the case 0 0b <  or 0/gv c ε< , 
when the Cherenkov radiation condition is not satisfied. 
In this case, instead of (51), we have 
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Then for the longitudinal component of the electric 
field we obtain the following expression 
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The electromagnetic part of the field (53) contains a 
sequence of bipolar antisymmetric pulses, as well as a 
wake monochromatic electromagnetic wave of a small 
amplitude. 

Let us investigate the expression for the electric field 
(52) for a number of model transverse profiles of the 
laser pulse intensity. First of all, let us consider the 
Gaussian transverse profile 

2 2/( ) Lr rR r e−= .    
In the most interesting limiting case Lb r>>  we 

have for the coefficients nα  
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For a model radial profile of a laser pulse 

( ) 0 1 L
L

L L

rJ , r r ,
R r

0, r r , b r r ,

  
λ ≤  τ =   

 > ≥ ≥

 

1 2.405λ = , 
we obtain  
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There are efficiently excited a finite number of radi-
al harmonics for which on the one hand / 2 1n br bλ <<  
and on the other hand / 2 1chn Ltω << . 

CONCLUSIONS 
In this paper the process of excitation of the wake 

Cherenkov radiation by a laser pulse in a dielectric 
waveguide is investigated. The nonlinear polarization of 
the dielectric medium, induced by the ponderomotive 
force from the laser pulse, is determined.  

In the case when the local electric field acting on a 
separate atom (molecule) of the medium coincides with 
the applied external electric field of the laser pulse, the 
ponderomotive force is purely potential ponF I∝∇ . This 
situation is realized, for example, in a gas dielectric me-
dium, in which the dipole electric fields of neighboring 
atoms can be ignored. In this case, the electric field ex-
cited by the laser pulse is purely potential and contains a 
bipolar solitary pulse, as well as a monochromatic 
wakefield wave at the frequency of the polarization os-
cillations.  

The situation changes radically for condensed mat-
ter: solids or liquids. In this case, the effective (local) 
electric field acting on separate atom can differ substan-
tially from the applied electric field, in our case the field 
of the laser pulse, since it is necessary to take into ac-
count the electric field caused with the polarization of 
all other atoms of the sample. In condensed dielectric 

media, a non-potential (vortex) part 0Frot pon ≠  of the 
ponderomotive force arises.  

On the example of a dielectric medium with a cubic 
crystal lattice, a solution is obtained for the excitation of 
Cerenkov wake radiation of a laser pulse in a dielectric 
waveguide. It is shown that the excited electric field 
consists of a potential field of polarization oscillations 
excited by a potential component of a ponderomotive 
force and a set of eigen wakefield electromagnetic 
waves of a dielectric waveguide. The latter are excited 
by polarization charges and currents induced by the vor-
tex component of the ponderomotive force. 
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ВОЗБУЖДЕНИЕ КИЛЬВАТЕРНЫХ ПОЛЕЙ ЛАЗЕРНЫМ ИМПУЛЬСОМ 
В ДИЭЛЕКТРИЧЕСКОЙ СРЕДЕ 

В.А. Балакирев, И.Н. Онищенко 
Исследован процесс возбуждения черенковского электромагнитного излучения лазерным импульсом в 

диэлектрическом волноводе. Определена нелинейная электрическая поляризация в изотропной диэлектри-
ческой среде и, соответственно, поляризационные заряды и токи, индуцированные пондеромоторной силой 
со стороны лазерного импульса. Получена и исследована пространственно-временная структура кильватер-
ного поля в диэлектрическом волноводе. Показано, что возбуждаемое поле состоит из потенциального по-
ляризационного электрического поля, вызванного нелинейной поляризацией среды, и набора собственных 
электромагнитных волн диэлектрического волновода. 

ЗБУДЖЕННЯ КІЛЬВАТЕРНИХ ПОЛІВ ЛАЗЕРНИМ ІМПУЛЬСОМ  
У ДІЕЛЕКТРИЧНОМУ СЕРЕДОВИЩІ 

В.А. Балакiрєв, I.М. Онiщенко 
Досліджено процес збудження черенковського електромагнітного випромінювання лазерним імпульсом 

у діелектричному хвилеводі. Визначена нелiнiйна електрична полярiзацiя в ізотропному діелектричному 
середовищі та, відповідно, полярiзацiйнi заряди i струми, iндукованi пондеромоторною силою з боку лазер-
ного iмпульсу. Отримана та досліджена просторово-часова структура кільватерного поля в діелектричному 
хвилеводі. Показано, що збуджуване поле складається з потенцiального полярiзаційного електричного поля, 
викликаного нелінійною поляризацiєю середовища, та набору власних електромагнітних хвиль діелектрич-
ного хвилеводу. 
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