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The process of Cherenkov electromagnetic field excitation by a laser pulse in the dielectric waveguide is investi-
gated. Nonlinear electric polarization in an isotropic dielectric medium and, accordingly, polarization charges and
currents induced by ponderomotive force of the laser pulse are determined. Spatial structure of the excited wakefield
in a dielectric waveguide is obtained and investigated. It is shown, that the wakefield consists of polarization poten-
tial electric field, caused by the nonlinear polarization of medium, and a set of eigen electromagnetic waves of the

dielectric waveguide.
PACS: 41.75.Lx, 41.85.Ja, 41.69.Bq

INTRODUCTION

A charged particle moving in a dielectric medium
with a velocity above light speed radiates electromag-
netic waves called Cherenkov radiation [1, 2]. The elec-
tric field of a moving charge polarizes the atoms (mole-
cules) of the dielectric medium, which in turn coherent-
ly re-emit electromagnetic waves.

A similar effect occurs when a short high-power la-
ser pulse propagates in a dielectric [3, 4]. In the linear
approximation in the field, the effect of polarization of
the medium at the field frequency only leads to a change
in the phase and group velocities of the laser pulse. In
the nonlinear approximation, the pulsed ponderomotive
force that propagates in a medium with the velocity
equal to the group velocity of the laser pulse also acts
quadratically with respect to the field on the coupled
electrons of the dielectric medium. This force, in turn,
leads to the polarization of the dielectric medium. When
the Cherenkov synchronism condition between the pon-
deromotive force of the laser pulse and the slow elec-
tromagnetic waves of the medium is satisfied, it causes
the excitation of electromagnetic Cherenkov radiation.

Note that in [4] proposed interpretation of the Ce-
renkov radiation of the laser pulse in a dielectric medi-
um as an effect of three-wave decay process. It's about
decay of an electromagnetic wave belonging to a laser

wave packet and having frequency w(k;), (K, is wave

vector), to a satellite with a lower frequency w(k, —k)
and an electromagnetic Cerenkov wave with a frequen-
cy a)ch(IZ) . For such process, the condition of frequency
synchronism of the indicated waves has the form
a)(lzo) = a)(lzo - IZ) + @y, (|Z) .
Assuming that ‘IZ‘ << ‘IZO‘, this condition implies the

condition for Cherenkov radiation of a laser pulse in a
dielectric medium

Thus, the effect of Cherenkov radiation of a laser
pulse is quite similar to the Cherenkov radiation of a
charged particle with the only difference that the role of
the electric field of a charged particle is played by the
ponderomotive force of a laser pulse.
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The wake Cherenkov radiation of a powerful ultra-
short laser pulse in a dielectric medium can be used to
accelerate charged particles like a analogous method of
laser wakefield acceleration in a plasma [5].

In this paper we formulate a system of nonlinear
equations of macroscopic electrodynamics that de-
scribes the process of excitation of Cerenkov radiation
by a laser pulse in a dielectric medium. On the basis of
these equations, the effect of Cherenkov radiation of a
laser pulse in a dielectric waveguide (optical fiber) will
be investigated.

1. FORMULATION OF THE PROBLEM.
BASIC EQUATIONS
In a homogeneous dielectric medium, a laser pulse

(wave packet) propagates with components of the elec-
tromagnetic field

E, (1) :%Eo (F.t)e" +cc. .
H (T,t)= %rot[ﬁo (F.t)e” J+ee, (O
0

v=kF-o.t, k is wave vector, k, =, /c, o, is the
carrier frequency of the laser pulse, E,(F,t) is slowly

changing in the space and time envelope of the laser
pulse.

Under the action of the ponderomotive force (the
HF-pressure force) quadratic in the laser field (1), a po-
larization, slow in the scale of the carrier frequency,
arises in the dielectric, which in turn will be the source
of the electromagnetic field excited by the laser pulse
(i.e. Cherenkov radiation).

The system of Maxwell equations describing the
electromagnetic field excited by the polarization in-
duced by the laser pulse has the form

rotE = _la_H, r0t|:| 216_E+4_TC@ ,
c ot c ot c ot
divE = —4ndivP, divH =0, (2)

P is vector of electric polarization.

2. DETERMINATION OF NONLINEAR
POLARIZATION
The next step of the theory is the determination of

the polarization P caused by the action on certain atoms
of the condensed dielectric medium both an electric
field which is in the Maxwell equations (2) and the pon-
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deromotive force from side of the laser pulse (1). For
this, a simple but adequate model of an elementary di-
pole located in the crystal lattice point is necessary.
Note that beginning from the microwave range of radia-
tion wavelengths and moreover in the optical range, the
orientational (dipole) and induced ionic polarization
mechanisms do not play an appreciable role due to the
high inertia of the ions. In these wavelength ranges, the
induced electron polarization of atoms is dominant [6].
Electronic polarization is due to the displacement of the
shell from the bound electrons of the atom relatively to
the nucleus under the action of the electric field.

The induced electronic polarization can be described
in the framework of the following model [6]. The atom
is represented as a point nucleus in a charge Z|e|, sur-
rounded by a smeared electron cloud with the charge —
Zle|. The electron cloud will be considered as a spheri-
cally symmetric homogeneous charged region of radius
Ro. When the electron cloud is shifted as a whole with
respect to the nucleus, the dipole moment of the atom

p=-eZr arises, where T is the radius vector of the
center of the electron cloud. Accordingly, the following
dipole returning force will act on thze electron cloud [7]
Eo(Z) ©)
RO
which leads to harmonic dipole oscillations of an atom
with eigen frequency

ze?

0 = = 4)
mR;

In a condensed medium, each atom is in a local (act-

ing) electric field E, , which can differ greatly from

loc ?

the macroscopic field E contained in Maxwell's equa-
tions (1). The local electric field includes both the ex-
ternal field and the total electric field of the induced
dipoles surrounding the taken atom. In a crystalline me-
dium with a cubic crystal lattice, the local electric field
is described by the Lorentz formula [6 - 8]

E, - E+4§ﬁ>. 5)

loc

We note that the Lorentz formula is exact for a con-
densed dielectric medium with a cubic lattice. However,
it qualitatively correctly describes the local electric field
for more complex crystal structures and even for liquid
structures [9]. Under the influence of external high-
frequency fields, dipole oscillators with eigen frequency
(4) will perform forced oscillations. The excitation
equation for the dipole oscillations of an atom can be
written as follows. Under the action of a ponderomotive
force quadratic in the laser field (1) (HF pressure force),
a polarization, slow in the carrier frequency, arises in a
dielectric medium, which in turn will be the source of
the electromagnetic radiation of the laser pulse field, in
particular, the Cherenkov radiation.

So the excitation equation for the dipole oscillations

of an atom can be written as follows
2=

d-r _ e[ =1c /= 1r_ -
F-}-(Dgr:—a(E:_ (r,t)+g|:VHL:|]— (6)

Here
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EX(T,t)= %EO (T,t)e" +cc.+ %PL
is the local electric field from the side of the laser pulse,
P, is HF-polarization of the dielectric on the carrier

frequency, induced by the laser pulse, E,DC(F,t) is a

local electric field (5), which includes a slow field
which excited by the ponderomotive force and con-
tained in Maxwell's equations (2).

An approximate solution of equation (6) will be

found in the form of a sum of the displacement T, (t)
rapidly oscillating at the carrier frequency of the laser
pulse and the slow displacement ?C(t) of the center of
the electron cloud relatively to the atomic nucleus
U= ()+7(1).
The rapidly oscillating displacement T_(t) is de-
scribed by the linear equation of motion of the oscillator

2=

I 2o e =
dtzL +0)0r|_ =—%Eo(r,t)e

i(RfL—c)[)

e 4n -
+cc.———P . (7
R ()

First of all, we determine the HF polarization. Tak-
ing into account the definition the polarization of unit
volume

P =—ZeNF, (8)
where N is the number of atoms per unit volume of the
dielectric, from (7) we obtain the equation for the polar-

ization P_ in the field of the laser pulse (1)

d*P -
dt2L oL m

2
2N %[EO (T..t)e" +cc.], (9)

2
v, =kl —ot, o] =0; -0 /3, a)§:47rZe N

— plasma

frequency. The solution of this equation is easily found

PL=xE. . (10)
- ZL—N (12)
1-"Ta N
3
is electrical susceptibility,
_ze 1
omool-o?

is the polarizability of an individual atom. In the qua-

sistatic approximation @? >> @/, the expression for the

polarizability is simplified and does not depend on the

frequency

_ Z¢?
mo;

Taking into account that 3, =(g_—1)/2n, where

2

p
o’
is the permittivity of the medium, the relation (11) im-
plies the well-known Clausius-Mosotti formula [5, 6]

gl _AmoN, (13)

e+2 3
which establishes a relationship between the dielectric
permittivity and the polarizability of an individual atom.
For a dielectric medium with a cubic lattice, taking into
account the expression obtained for the polarization
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oL (12)

e =¢(m), e(w)=1+



vector (10), we find the following expression for the
local electric field of the laser pulse.

L2 Bl ),

cloc _
ES =

(14)

Accordingly, from the equation of motion (11) we
obtain expressions for high-frequency displacement
T (t) and velocity v, (t)

()= —a%[EO (T.t)e" +ce],

— 1r.= . i
v, (t)= amE[IEO (T..t)e" +ce. ],

(15)

eg +2 1
a=— .
2 2
m 3 o,-o
Let us now formulate the equation for the slow dis-
placement T, (t) of a dipole oscillator. Preserving on the

right-hand side of Eq. (6) only quadratic terms with re-

spect to the laser field, we obtain the equation
2=
C 2%

aer ef- 4t
Folt = E(Ft)+ 28R |-
are o m[ (7.1 3 }

e e +2/,, \= L. o
et goe ) wa ) o
Angular brackets mean averaging over HF oscilla-
tions. Performing the averaging procedure with taking

into account the expressions for the HF quantities (14),

(15) entering in (16), we obtain the following equation
2=

o £€+2-=

T%wéfc:—%[éf_;ﬂ*m g (40
where
FovlE [ (EV)E, +(EV)E]. o

The first term in (18) describes the gradient force of
HF pressure. The second term occurs only in the case of
a crystalline medium and is due to the difference be-

tween the local electric field E{ in the crystal and the

electric field of the laser pulse. In dielectric media,
where the acting field coincides with the external field,
for example, in a gas dielectric, this term is absent. Tak-
ing into account the expression for polarization (8), we
obtain a material equation for the nonlinear polarization
2D 2
d—2P+(x)§I3=ZE NE_eNou-:—i-Zr:. (19)
dt m 4m
The Maxwell equations (2) together with the equa-
tion for the polarization (19) describe the electromag-
netic Cerenkov radiation of a laser pulse in a condensed
dielectric medium.
We solve this system of equations by the Fourier
transform

E(F,t)= [ E,(Ne™do, P(F,t)= [ F,(Ne"do,
where E_(r), P,(F) are Fourier components of the
corresponding quantities. For example

- 1% - .
E_(F)=— | E(r,t)e""dt.
o0 =5 [EwD

From the material equation (19) we find the expres-
sion for the Fourier component of the polarization vector
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p, -2l Le e
4
where
1+8§Nach(a))
&g (@) = VT (20)
17 Natg (@)
Ze? 1 1
a., ()= , U= & —1(¢, (w)-1),
(@) m a)(f—a)z H 647Z'ZZ€N( LD (@) =)

Ifw—Fourier component of the quadratic dependence

(18) of the ponderomotive force on the electric field
strength of the laser pulse. Accordingly, the system of
Maxwell equations for the Fourier components of the
electromagnetic field can be represented in the form

rotg, = +ik,H

rOtHw = _ikogch (60) Ew +4Tﬂ. prol ’

dive, ()E, = 47p,,, divH,=0.  (21)

The Fourier components of the polarization currents
and charges induced in the dielectric by the ponderomo-
tive force of the laser pulse are described by expressions

ipolw = Ia)/u'fw’ ppolw = :udIVIEw : (22)
The obtained working system of equations makes it
possible to investigate Cherenkov radiation in a variety

of physical situations: a model of an infinite dielectric
medium, dielectric waveguides and resonators.

3. CHERENKOV RADIATION OF A LASER
PULSE IN A DIELECTRIC WAVEGUIDE

Let us consider a dielectric waveguide made in the
form of a homogeneous dielectric cylinder whose lateral
surface is covered with an ideally conducting metal
film. Along the axis of the waveguide, a circularly po-
larized laser pulse propagates with the components of
the electric field

E,, =\/%\y(r,t—z/vg), Eoy =I1Eq
\y:[R(r)T(t—z/vg)Jw.

The function R(r) describes the radial intensity pro-
file of the laser pulse, I:|E0|2, R(0)=1 R(r=b)=0,
b is the radius of the waveguide, the function T(z) de-
scribes the longitudinal profile, z=t-z/v,, v, is the group

(23)

velocity, maxT(z) =1, 1, is the maximum intensity.

From the system of Maxwell's equations (21) fol-
lows the wave equation for the longitudinal Fourier
component of the Cherenkov electric field

0
Lm_iﬁjm (24)
gn(®) oz c

The Fourier components of the polarization charges
and currents are determined by expressions (22). For a
circularly polarized laser pulse (23), these expressions
take the forms

ppolm = u|:A|m(r‘T)+

AEZw + kfz)gch ((’O)EZ(U = 4“[

g -1

(25)

Al (r,r)]
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. .0
szolm = |(J)]J.§|w (r,‘L’) ' (26)
Let’s introduce the function
ol (r,
D, =¢, (®)E, —4nu ma( 2 @7)
Z

For this function, instead of equation (24), taking in-
to account the relations (25), (26), we obtain the equa-
tion

g -1 ol (r,r
=4qpt——A 2
e T

The function D,, has a simple physical meaning

and is a longitudinal Fourier component of the electric
induction D, =E, +4nP, with taking into account the
polarization (20), caused by the action of the pondero-
motive force of the laser pulse.

The longitudinal component of the electrical induc-
tion should be found in the form of a series of Bessel

functions
-S'c, (z,t)Jo(xn ij,
n=0 b

where A, are roots of the Bessel function Jo(x) . For

AD,, + ke, (0)D ) . (28)

p40)

(29)

the coefficients C_ of the expansion from (28) we ob-
tain the equation

dC —1A% i,z
nyk? C, = —4nik ul,——— %y Te™ . (30
& ; () ik ul, 6 N - (30)
2 bZ
Here k, =— , kZ(w) = k & (@) — b2 N, ——J A,),

b
j [ jrdr T, =—jT(r)e'Wdr
0

In the considered case of an infinite dlelectrlc wave-
guide in the longitudinal direction, the forced solution
of Eg. (30) has the form

C, =-illw[e,(®)- 1] A (@ )Te ko,
where
(e -1) A
167v,zeN’ " BTN,
12
An(a)):k t:h((o)___k2

Taking relations (27) and (29) into account, we ob-
tain the following expression for the Fourier component
of the longitudinal component of the electric field

E,. (N =TT (0)G(r,»).

Here

6(ro) = i@ gue )
& (@)

e -1la 3(rib)]
6 ; "A (o)

Accordingly, the longitudinal component of the ex-
cited electric field can be represented as a convolution

31)

E, (r,7) =an(fo)G(r,r—ro)dro, (32)
where -
G(r.r—-1,) _ 1 j G(r,oe dw  (33)
2r =,
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is Green's function. The Green's function actually de-
scribes the structure of the wakefield in a dielectric me-
dium excited by a laser pulse with a ¢ -shaped longitu-
dinal profile of the intensity.

3.1. CALCULATION OF THE GREEN FUNCTION

The expression for the Green's function (33), taking
into account expression (31), is conveniently written as
follows

G(r,9) =G, (r,9+G,(r,9), (34)
G, (r,9) =R(r)S, (%), (35)
G, (r,9) = (4S9, (36)
where
T wdgeio Ea(@) =1

S,(9) = - L wd we ) (37)

_ L T —ivg _ Een (a)) -1 o
S, (9) = - £ wdwe PRETWAY 9=r1-17,.(38)

The expression (21) for the dielectric permittivity
&, (@) can be written in the form
2

a)P
gch (a)) = 1_ 2 2
o° — ]

g =X
1-x* '

2 2 2 5
—w, 13, & =1l+w,lw; is

where X=w/w, o=
static permittivity ¢, = ¢, (0 > 0) .
The collective frequency of dipole oscillations w, is

lower than the frequency of an individual atomic dipole
oscillator. This effect is due to the screening of the field
of an individual atomic dipole by the total field of the
set of the similar dipoles surrounding it.

The integrand in (37) has simple poles w =+, —i0
located in the lower half-plane of the complex variable

o, o, =|w; +o; — is the frequency of the eigen lon-
gitudinal oscillations of the dielectric medium, which
nullifies the dielectric permittivity &, (@) =0.
Calculating the residues at these poles, we obtain an
expression for the integral S,(%) and, accordingly, for
the first term of the Green's function
G,(r.9) = -R(r)e; 7(9) cos o, 9, (39)
here y(r—17,) is unit Heaviside function. As for the

Fourier integral (38), its integrand, in addition to the
poles listed above, has additional poles A (w)=0. This
equation can be given in a more convenient form for
analysis

PN [ ——— O PR

2,2 2 chn stn
Vg]/g W — 0y
where
2 2\-1
792(1_ﬁ) lﬂ :V /C'a)chn:a)dxchn’

Xchn = (b +yn)+\’_(b +yn) +yn'
smz_(b +yn)+\ _(b +yn) +yn7

12 2
bozygz(ﬂgzgo _1)’ ZbZﬁ

Vstn = a)d Xstn '
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The poles w=zaw,, —i0 are also located in the

lower half-plane of the complex variable @ near the
real axis. They correspond to the eigen electromagnetic
waves of the dielectric waveguide, which are in Ceren-
kov synchronism with the laser pulse. Since these poles
are always real, the cutoff radiation of the laser pulse in
the dielectric waveguide takes place for all values of the
group velocity of the laser pulse and the parameters of
the dielectric waveguide (in our case, the values of the
static dielectric constant ¢, and the radius of the wave-

guide b). The frequency range, in which the discrete
frequencies @, of the eigen waves there are, depends

chn

on the sign of the parameter b,. If b, >0, what mean
sv, >c/4/g,, then the Cherenkov frequencies are in the
range a, >a,, >0. If by <0 (this corresponds to

v, <c/\/g), then for the Cherenkov frequencies it is
rightly @, > @y, > @ y/|b,|- Note that for by <0, it is

always |by| <1.

Besides of the real Cherenkov poles, there is also a
pair of complex conjugate poles @ = +iv,, in the inte-

grand (38) located on the imaginary axis. These poles
correspond to a quasi-static electromagnetic field local-
ized in the laser pulse region. Calculating the residues at
all poles of the integrand (38), we find the second term
of the Green's function

Gz(raT_To)z_gL =

o} {®(r) (9 cos v, 9+

A
» Prdo(G1T)

1
WS b Tt 9)cosw, 9
9}/9 n=1 c2hn +V52m |: chn Z( ) o
1 ~Venld
———sign(9)e™ " |1, (40)
285“’1

where

o3, (A,r/b
q)(r):zpz ( ) kg =wg /vg'gchn = ch(wchn)’

S kE+AIDP

gstn = gch (ivstn) .
The series ®(r) can be exactly summed

O(r) = kgz‘b[l“(r, f)R(r,)rdry, (41)
()= 1 {Ao(kgr,k b)lo (K1), 1>, 2)
lo(kyr) [ To(kgr)Ay (K1, K D), 1<y

Summing the expressions (39), (40), we obtain the
final expression for the Green's function

G(r,9) =-o; {R(r) + 8L6_1d>(r)} 2(F)cos w3 -

A

- 20N

— ———| —y(9)cos 9—
O-; 0)2 +V2 /1/( ) a)chn

chn stn chn

1 . _ g -1
—2—5|gn(8)e 5‘"9} , O =LTa)§v;7§. (43)
stn

The Green's function contains potential monochro-
matic wakefield, caused by the excitation of polarization

oscillations of the dielectric medium. The electromag-
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netic part of the Green's function contains a wakefield in
the form of a superposition of eigenmodes of a dielec-
tric waveguide, as well as a set of bipolar electromag-
netic pulses.

3.2. PICTURE OF THE WAKEFIELD EXCITED
BY A LASER PULSE

After substituting the Green's function (43) into the
expression for the total field of the laser pulse in the
dielectric waveguide (32), we obtain the following ex-
pression for the longitudinal component of the wake-
field of a laser pulse with an arbitrary profile

E,(r,7) = EP(r,0) +ECV(r,7), (44)
where

EPV(r,7) =—31IF (1) Z (w,7), (45)

F(rn =R+ o),

Ez(em) (ry T) = —Oﬂiw{iz (a)chnT) -

n=1 wchn + Vstn gchn

(46)
—i X (vstnr)}.
stn
Function

Z(w7) = [ T(z5) cos o(r —7,)dr, (47)

—o0

describes the longitudinal distribution of the wakefield
polarization field @ = o, , as well as the wakefield elec-

tromagnetic field of the corresponding radial harmonic
o = o, of the dielectric waveguide.

Function

X(vg7) = [ T(zo)sign(z —z)e =" ldz,  (48)
describes the longitudinal component of a set of bipolar
quasi-static electromagnetic pulses.

For a symmetric laser pulse
T(z,) =T (-7,),T(z, > ) - 0, the expression for
the function (46) can be written as follows

Z(wr) = 2T (0) cos wr + Z (o7), (49)
where

T(w) = JT (z,)coswr,dz,.
0

Is an amplitude of the Fourier component at the fre-
quency of a function describing the longitudinal profile
of the intensity of the laser pulse,

Z,(o7)= —TT (zp)cos (7 —17,)d7,. (50)

Behind the laser pulse 7 >0, the electric field is the
superposition of electromagnetic monochromatic waves
and polarization oscillations, and the quasistatic field
that disappears with distance from the laser pulse
7 — . Before the pulse, there is only a quasistatic
field, that also decreases with distance from the pulse.

Let us investigate the expression for the electric field
(44) - (46) for a number of model transverse and longi-
tudinal intensity profiles of the laser pulse. Firstly we
consider the model longitudinal profile of the laser pulse

ISSN 1562-6016. BAHT. 2018. Ne4(116)



Il
t
T(r)=e *,
where t, is the laser pulse duration.
For such an impulse, we have

Z(w7) =

——L | 24(r)cos w7 +t
ot +1{ (@) -

a)a)a)

dT (T):|
dr |’
chn ?
X(V7) = %

i _ ~Venle]
e +1S|gn(r)[T(r) e ]

The electromagnetic pulse is bipolar, and taking into
account these expressions for the longitudinal compo-
nent of the electric field excited by the laser pulse, we
obtain the expression

w*t
E,(r,7)=-I1 zsz F(r){Z;((r)Coswgzth dT(T)}—
a)g C+1 dr
© Ar1b t
Z ){— - Lz [2x(7)cos w7 +
n=1 a)chn +Vstn Echn chnt

+,

€4 Vstnt

dT(r)}r 12 {evm,ﬂ dT(r)}} (51)
dr -1 b odr .

It follows from this expression that the polarization
electric field, along with a monochromatic wakefield
wave, contains a solitary pulse whose longitudinal pro-
file completely repeats the electrical polarization profile
of the dielectric and, accordingly, of the ponderomotive
force. The width of this pulse Az, ~t,_ is close to the

width of the laser pulse and does not depend on the pa-
rameters of the dielectric waveguide. Each radial elec-
tromagnetic harmonic of the dielectric waveguide has
an analogous structure. In addition, there is a set of elec-
tromagnetic pulses. The width of each of them

74, ~1/v,, Iis determined by the parameters of the

dlelectrlc waveguide and does not depend on the dura-
tion of the laser pulse.

Let us investigate the expression for the electromag-
netic field (44) in the quasistatic approximation
o >>o. In this approximation, the permittivity
&, ~ &, isindependent of frequency.

Consider the most interesting case b, >0 or
Vv, >C/ /g, . Inthis case we have

Ay
fEmm%
Vi :a)d\/_oza)dyg\[ﬂggo _1EVSI'

Accordingly, the expression for the electric field
(51) becomes

(52)

E,(r,7) = -0~ gF(r)[Z;((r)cosa)gr+
L %o
Y dT(r)}_
dr
lg-le -1 @
1= ——>» —"qJ,(Ar/b)|2 C0S +
tL 50 6 ;Nn qn 0( n )[ Z(T) wchnT
Y dT(r)}_
dr
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H ﬂZ (‘90 1)3(‘9L )|:e—vs|r dT (T):IS( ) (53)
where
ot w? t
Oy =— gz - Oy = chnz
oty +1 ol +1'

S(r) = Z o —Mg Jy(AbIT).

n=1 St
The width of all electromagnetic pulses is the same
Az, ~1/v, and does not depend on the number of the
radial harmonic. The level of the field of these pulses is
small.
Let us now consider the case b, <0 or v, <c/,/¢, ,

when the Cherenkov radiation condition is not satisfied.
In this case, instead of (51), we have

:a)d\/jzwdyg,ll—ﬂgzg ,

_ DY _

e Wlﬂ%

Then for the longitudinal component of the electric
field we obtain the foIIowing expression

E,(r,r)=- 1&- gF(r)[Z;((r)Coswgr+
L %o
, dT(r)}_
dr

lg-le -1 @ . valrl
— —» g J,(Anr/b)| signze " +
D 2y ol )| sig

dT (r)}_
dr
1o 18L—1[2;((r) COS @y, T + T(T)}
tL , O dr
- a
Xz_qn‘]o (
N,

The electromagnetic part of the field (53) contains a
sequence of bipolar antisymmetric pulses, as well as a
wake monochromatic electromagnetic wave of a small
amplitude.

Let us investigate the expression for the electric field
(52) for a number of model transverse profiles of the

laser pulse intensity. First of all, let us consider the
Gaussian transverse profile

R(r)=e
In the most interesting limiting case b>>r we
have for the coefficients «,

r’ A2
=-Ltexp| -2t
% 4 p[ 4 sz

For a model radial profile of a laser pulse

r
I A —|,r<r,
R ()= () g

0,r>r,bxrzr,
A =2.405,

n

+,

J,r1b) (54)

—r?/r?

we obtain
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There are efficiently excited a finite number of radi-
al harmonics for which on the one hand A, /2b<<1

and on the other hand a,,t /2 <<1.

chn

CONCLUSIONS

In this paper the process of excitation of the wake
Cherenkov radiation by a laser pulse in a dielectric
waveguide is investigated. The nonlinear polarization of
the dielectric medium, induced by the ponderomotive
force from the laser pulse, is determined.

In the case when the local electric field acting on a
separate atom (molecule) of the medium coincides with
the applied external electric field of the laser pulse, the

ponderomotive force is purely potential lfpon oc VI . This

situation is realized, for example, in a gas dielectric me-
dium, in which the dipole electric fields of neighboring
atoms can be ignored. In this case, the electric field ex-
cited by the laser pulse is purely potential and contains a
bipolar solitary pulse, as well as a monochromatic
wakefield wave at the frequency of the polarization os-
cillations.

The situation changes radically for condensed mat-
ter: solids or liquids. In this case, the effective (local)
electric field acting on separate atom can differ substan-
tially from the applied electric field, in our case the field
of the laser pulse, since it is necessary to take into ac-
count the electric field caused with the polarization of
all other atoms of the sample. In condensed dielectric

media, a non-potential (vortex) part rotfpon #0 of the

ponderomotive force arises.

On the example of a dielectric medium with a cubic
crystal lattice, a solution is obtained for the excitation of
Cerenkov wake radiation of a laser pulse in a dielectric
waveguide. It is shown that the excited electric field
consists of a potential field of polarization oscillations
excited by a potential component of a ponderomotive
force and a set of eigen wakefield electromagnetic
waves of a dielectric waveguide. The latter are excited
by polarization charges and currents induced by the vor-
tex component of the ponderomotive force.
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BO3BYXJIEHUE KHJIbBATEPHBIX OJIEM JIASEPHBIM UMITYJIHLCOM
B IUDJIEKTPUYECKOM CPEJE

B.A. Banakupes, H.H. Onuwienko

Hccnenosan mporecc Bo30YX/I€HHS YEPEHKOBCKOTO 3JIEKTPOMATHUTHOTO M3ITYYEHHS JIa3epHBIM MMITYJIECOM B
JURJIEKTPUYECKOM BOJHOBoJE. OmpeneneHa HeMMHEWHAs AJIeKTpUYecKas MONApH3alys B H30TPOMHON AUIIEKTPH-
YECKOU CpeJie U, COOTBETCTBEHHO, MOJIIPU3ALIMOHHBIE 3aps/ibl U TOKU, HHIYLIIUPOBAHHBIE IIOHAEPOMOTOPHOM CHIION
€O CTOPOHBI JIa3€pHOr0 MMITyJibca. ITonydena u uccneoBaHa MPOCTPAHCTBEHHO-BPEMEHHAsA CTPYKTypa KHIIbBATEP-
HOT'O TOJIs1 B AUDJICKTPHUYECKOM BOJHOBOJE. [loka3aHo, 4To BO30yXJaeMoe MoJie COCTOUT U3 NMOTEHLIUAIBHOTO MO-
JISIPU3ALMOHHOTO AMIEKTPUYECKOTO IOJIS, BBI3BAHHOTO HEJIIMHEHHOH momsdpu3anueil cpeapl, 1 Habopa cOOCTBEHHBIX
9NIEKTPOMArHUTHBIX BOJIH JUAJIEKTPUUIECKOTO BOIHOBOA.

3BYKEHHSA KIJIbBBATEPHHUX ITOJIIB JIASEPHUM IMITYJIbCOM
Y AIEJEKTPUYHOMY CEPEJOBHIII

B.A. Banaxipees, .M. Oniwenko

JocnimkeHo npouec 30yKEHHS! YepEHKOBCHKOTO €JIEKTPOMArHiTHOTO BHUIIPOMIHIOBAHHS JIA3€PHUM IMITYJIbCOM
y JieNeKTpUYHOMY XBUJICBOIi. Bu3HaueHa HeNiHIfHA eNeKTPHYHA MOJAPi3allis B i30TPOMHOMY HiCICKTPUYHOMY
CepeIOBHINI Ta, BiAIOBIIHO, MOJAPI3aLliiiHI 3apsiau i CTPyMH, IHAYKOBaHI MOHAEPOMOTOPHOIO CHIIOKO 3 OOKY Ja3ep-
HOTO iMIynbcy. OTpuMaHa Ta AOCIHIPKEHA TPOCTOPOBO-9aCOBA CTPYKTYpPa KiIbBATEPHOTO MOJIS B JiCICKTPUIHOMY
xBuieBoi. [Tokazano, 1mo 30y/KyBaHe MMOJIe CKIAAEThCS 3 MOTEHINIAILHOTO TOJIAPI3alliiHOTO EIeKTPUIHOTO TTOJIS,
BHKJIMKAHOT'O HENIHIHHOIO MOJIIPHU3AIEI0 CEPEOBHINA, Ta HAOOPY BIACHUX €IEKTPOMATHITHUX XBHJIb JiCIIEKTPUY-
HOTO XBHJICBOAY.
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