ВАНТ №6 2006 |
|
СОДЕРЖАНИЕ | СТАТЬЯ |
FOUR MOTIONAL INVARIANTS IN ADIABATIC EQUILIBRIAO. Ågren, V.E. Moiseenko1 Uppsala University, Ångström laboratory, SE-751 21 Uppsala, Sweden; 1Institute of Plasma Physics, NSC "Kharkov Institute of Physics and Technology", 61108 Kharkiv, Ukraine
Recently published derivations of four stationary motional invariants in adiabatic equilibria are presented. The four invariants (e, m, Ig, I||) contains a radial drift invariant Ig, which determines the density radial profile and the diamagnetic drift, and an additional parallel invariant I|| that determines the plasma current along the magnetic field. Thus, there are in general more than three stationary invariants for the adiabatic motion of a gyrating particle. The result is valid to first order in the gyro radius, and is applicable to geometries with adiabatic fields, including toroidal as well as open trap geometry. In axisymmetric tori, the toroidal invariant can replace the longitudinal invariant in the analysis and the radial invariant can be determined from the projected gyro center motion. The four invariants is determined for passing as well as trapped particles. For equilibria with sufficiently small banana widths, the radial invariant can to lowest order be approximated by the gyro center value Ig≈ro(x,v) of the radial Clebsch coordinate. To this lowest order, the gyro centers drift on a magnetic flux surface.
| |
ЧЕТЫРЕ ИНВАРИАНТА ДВИЖЕНИЯ В АДИАБАТИЧЕСКИХ РАВНОВЕСНЫХ СОСТОЯНИЯХО. Агрен, В.Е. Моисеенко Представлены недавно опубликованные исследования по поиску четырех стационарных инвариантов движения в адиабатических равновесных плазменных конфигурациях. Найденные четыре инварианта (e, m, Ig, I||) включают в себя радиальный дрейфовый инвариант Ig, который отвечает за радиальный профиль плотности плазмы и за диамагнетизм, и дополнительный параллельный инвариант I||, который определяет продольный ток. Таким образом, существует более чем три стационарных инварианта для адиабатического движения частицы в магнитном поле. Этот результат является приближением первого порядка по малому гирорадиусу и применим к геометриям с адиабатически меняющимся магнитным полем, включая тороидальные системы и открытые ловушки. В осесимметричном торе параллельный инвариант может быть замещен тороидальным инвариантом, и радиальный инвариант может быть найден из спроецированных уравнений движения. Четыре инварианта существуют как для пролетных, так и для запертых частиц. Для равновесных состояний с достаточно малой шириной банановых траекторий радиальный инвариант в первом приближении представляет собой радиальную Клебш-координату центра Ларморовской орбиты частицы Ig≈ro(x,v). В этом приближении частицы дрейфуют вдоль магнитных поверхностей. | |
ЧОТИРИ ІНВАРІАНТА РУХУ В АДІАБАТИЧНИХ РІВНОВАЖНИХ СТАНАХО. Агрен, В.Є. Моісеєнко Подані результати нещодавно опублікованих досліджень з пошуку чотирьох стаціонарних інваріантів руху в адіабатичних рівноважних плазмових конфігураціях. Знайдені чотири інваріанти (e, m, Ig, I||) включно з радіальним дрейфовим інваріантом Ig, що відповідає за радіальний розподіл густини плазми і за діамагнетизм, та додатковий паралельний інваріант I||, який зазначає уздовжній струм. Таким чином, існує більш ніж три стаціонарних інваріанта для адіабатичного руху частинки в магнітному полі. Цей результат є наближенням першого порядку за малим гірорадіусом і може бути застосований до геометрій, де магнітне поле змінюється адіабатично, включно з тороідальними системами та відкритими пастками. В вісесиметричному торі паралельний інваріант може бути замінений на тороідальний, і радіальний інваріант може бути знайдений із спроектованих рівнянь руху. Чотири інваріанти існують як для пролітних, так і для замкнених частинок. Для рівноважних станів з достатньо малою шириною бананових траєкторій радіальний інваріант у першому наближенні є радіальною Клебш-коордінатою Ларморовського центру орбіти частинки Ig≈ro(x,v). В цьому наближенні частинки дрейфують уздовж магнітних поверхонь. |