Возбуждение дельта резонанса в инклюзивном е-d рассеянии при малых переданных импульсах

Э.Л.Купленников

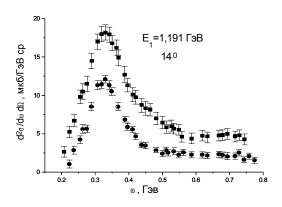
ИФВЭЯФ ННЦ ХФТИ, г. Харьков

•1. ВВЕДЕНИЕ

При переданных энергиях (ω) больше массы пиона становится возможным рождение реальных пионов при рассеянии электронов на составляющих ядро нуклонах. В энергетическом спектре A(e,e')-реакции появляется широкий пик, который ассоциируется с рождением и распадом первого нуклонного Δ (1232) резонанса.

Экспериментальные и теоретические исследования данного процесса на сложных ядрах выявили некоторые особенности его поведения. В частности, найдено, что инвариантная масса (\mathbf{W}^{A}) в максимуме пика электророждения пионов (ПЭП) в пределах погрешностей эксперимента не зависит от ядра [1]. При этом, в зависимости от кинематических условий измерений ПЭП может располагаться при больших, равных или меньших \mathbf{W}^{A} ($\boldsymbol{\omega}$) относительно соответствующих величин для свободного нуклона [1]. Причины наблюдаемого факта до конца не ясны. Это может быть вклад процессов, которые не связаны с реальным резонансом [1,2], влияние эффектов ядерной среды [3,4] или свойства самого резонанса [5].

Электророждение дельта резонанса на дейтроне исследовалось существенно реже. Систематические экспериментальные данные d(e,e')—реакции опубликованы в [6,7]. Работы посвящены получению сечения дельта резонанса на нейтроне в диапазоне $0.1JQ^2J0.5(\Gamma \ni B/c)^2$ и переходных формфакторов вершин $\gamma p \Delta^+$ и $\gamma n \Delta^0$ в интервале $0.16JQ^2J0.38$ ($\Gamma \ni B/c$)². В настоящей работе представлены дифференциальные сечения $^1H(e,e')$, d(e,e') реакции в неизученной области импульсов 0.03-0.086 ($\Gamma \ni B/c$)². Данные дополняют и расширяют кинематическую область экспериментальных исследований.


•2. ЭКСПЕРИМЕНТ

Инклюзивное сечение e-d рассеяния измерено в Харькове на линейном ускорителе электронов ЛУ-2 ГэВ для угла рассеяния θ =14° и начальных энергий электронов E_1 =0.888, 0.990, 1.191 и 1.385 ГэВ. В эксперименте использовались низкотемпературные дейтериевая и водородная мишени. Электроны, рассеянные на ядерных мишенях или пустом аппендиксе (фоновые измерения), анализировались по импульсу магнитным спектрометром с однородным полем и двойной фокусировкой и детектировались телескопом

детекторов. Различные фоновые вклады в сечение измерялись, а затем вычитались из электронного спектра. Интенсивность первичного пучка электронов определялась с помощью монитора вторичной эмиссии. Абсолютная нормировка экспериментального оборудования осуществлялась путем сравнения с е-р-сечением. В энергетические спектры вводились радиационные поправки. Поскольку квазисвободный пик (КСП) и ПЭП перекрывают друг друга в широкой области переданных энергий, квазисвободное е-d-сечение рассчитывалось с использованием результатов дисперсионных вычислений и вычиталось из неупругой части спектра.

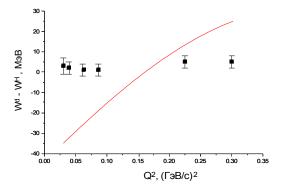
•3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полностью исправленный энергетический спектр на водороде и дейтерии для θ =14° и E_1 =1.191 ГэВ представлен на рисунке 1. Экспериментальный ПЭП состоит из двух основных вкладов - электророждение изобар Δ^+ (1232) и Δ^0 (1232).

Рис. 1. Зависимость сечения ${}^{1}H(e,e')$ и d(e,e') реак-ции от переданной энергии. θ =14°, E_{1} =1.191 GeV

Видно, что дифференциальное сечение на нуклоне и дейтерии не идет к нулю за областью резонанса, а стремится к постоянному значению. Эта величина не так уж мала и в среднем составляет порядка 22% и 27% от сечения в максимуме ПЭП для ¹Н и d соответственно. В отличие от ядерных данных, где смещение между пиками достигает десятков МэВ, спектры на дейтроне и нуклоне расположены примерно при одной и той же переданной энергии. Если

сравнить дифференциальное сечение на нуклон, то на дейтроне оно подавлено относительно сечения на свободном нуклоне в среднем на 14%.


Анализ спектров совместно с данными [6] показал, что ширина ПЭП на половине высоты для дейтрона (ШП $^{\rm d}$) плавно нарастает в области импульсов 0.03JQ $^{\rm 2}$ J0.4 (ГэВ/с) $^{\rm 2}$ от 160 до 228 МэВ. Наблюдаемые ширины больше, чем та же величина для свободного нуклона. Дополнительное уширение обусловлено ферми–движением нуклонов, эффектами взаимодействия нуклона и пиона с остаточным нуклоном, низкоэнергетичными хвостами вышележащих резонансов и пр.

максимума ПЭП изучалась Положение функция инвариантной массы. В этом случае легко сравнивать W^A и W^H , т.к. W^H не зависит от Q^2 и примерно равна 1220 МэВ [1]. Величины $W^{H(d)}$ определялись путем подгонки к экспериментальным точкам плавной кривой. Смещение относительно друг друга находилось как $O^d = W^d - W^H$ и $O^{A}=W^{A}-W^{H}=W^{A}-1220$ (для дейтрона и ядерных данных соответственно). Поскольку величины W^A для ядер Аі4 в пределах ошибок не зависят от их массы [1], для грубых оценок O^{A} использовалась кривая, подогнанная к экспериментальным точкам для всех Полученные ядер. параметры, включая дифференциальное сечение d(e,e')-реакции максимуме пика $d^2\sigma/d\omega d\Omega$, отражены в таблице и частично приведены на рисунке 2.

Таблица

Экспериментальные параметры ПЭП

Q^2 ,	$d^2\sigma/d\omega d\Omega$,	ШП ^н ,	ШП ^д ,	O ^d ,	O ^A ,
$(\Gamma \ni B/c)^2$	мкб/ГэВ ср	МэВ	МэВ	МэВ	МэВ
0.030	22.2±1.6	126±6	162±10	3±4	-35
0.039	21.2±1.4	124±6	160±10	2±3	-32
0.061	18.3±1.2	132±7	164±10	1±3	-26
0.086	17.6±1.0	123±6	178±10	1±3	-19

Рис. 2. $O^{t}(Q^{2})$ -зависимость. Точки для Q^{2} =0.225 и 0,300 (Гэв/с) 2 из [6]. Кривая - подгонка к экспериментальным значениям $O^{t}(Q^{2})$ для Ai4

Результаты анализа экспериментальных энергетических спектров d(e,e') реакции, в частности, показывают, что величины O^d и O^A и их Q^2 -

зависимость существенно отличаются друг от друга. Если ПЭП для ядер Ai4 может находиться как при больших, так и меньших значениях инвариантной массы (переданной энергии) относительно пика на свободном нуклоне, пик электророждения пионов на дейтроне расположен систематически выше резонанса на свободном нуклоне. Величина O^d не меняет знак и примерно постоянна в изученном кинематическом диапазоне. Исходя из общих соображений, результат не удивителен, т.к. необходимо затратить некоторую дополнительную энергию для создания резонанса на связанном нуклоне.

●4. ВЫВОДЫ

На базе систематических экспериментальных данных 1 H(e,e')— и d(e,e')—реакции при малых переданных импульсах $0.03JQ^2J0.086 (\Gamma 9B/c)^2$ выделены О²-зависимости основных параметров Показано, в частности, что зависимости $O^d(Q^2)$ и $O^{A}(Q^{2})$ существенно отличаются друг от друга. Поскольку дейтрон является рыхлой системой с минимальной плотностью нуклонов, ожидается, что влияние динамических короткодействующих корреляций и взаимодействия в конечном состоянии на сечение инклюзивной реакции в области резонанса мало. Вклад КСП вычисляется с достаточно высокой точностью. Двухнуклонные механизмы выбивания (в том виде как они рассматриваются для сложных ядер) отсутствуют. Поэтому можно предположить, что $O^{d}(Q^{2})$ -зависимость на дейтроне отражает реальную ситуацию. Для сложных ядер вклад в сечение процессов, которые не связаны с реальным резонансом, либо с влиянием эффектов ядерной среды, может быть значительным, что приведет к искажению экспериментального спектра. Таким образом, не исключено, что большая часть наблюдаемого "смещения" ПЭП на ядрах Аі4 относительно пика на свободном нуклоне в сторону меньших инвариантных масс (переданных энергий) обусловлена фоновыми вкладами.

●Литература

- **1.** Sealock RM. et al. Phys.Rev.Lett. <u>62</u>,1350(1989).
- **2.** Meziani Z.E.et al. Phys.Rev.Lett. <u>54</u>,1233(1985).
- **3.** Van Orden J.W. Ann. of Rhys. <u>131</u>, 451(1981).
- **4.** Chen C.R., Lee S.H. Phys.Rev. <u>C38</u>, 2187(1988).
- **5.** O'Connell J.S. et al. Phys.Rev. C38, 2447 (1988)
- **6.** Bleckwenn J. et. al. Nucl. Phys. <u>B33</u>, 475(1971).
- **7.** Титов Ю.И. и др. ЯФ. <u>21,</u>113(1975).

Статья поступила: в редакцию 15 мая 1998 г., в издательство 1 июня 1998 г.