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INTRODUCTION
It is known that in boundless periodic mediums 

and  waveguides  there  are  two  different  in  basis 
electromagnetic eigen oscillations supported by medium 
(waveguide) without external currents and charges [1]. 
In  the  certain  frequency  intervals  (in  passbands)  the 
electromagnetic  oscillations  represent  wave  process 
which carry a constant energy (in the case of absence of 
damping)  in  direct  or  opposite  direction.  Between 
passbands  the  electromagnetic  oscillations  have  a 
structure that is distinct from the previous case. In these 
frequency intervals electromagnetic oscillations transfer 
no  energy  in  the  direction  of  periodicity  and  have 
decreasing (increasing) dependence on the coordinate. 
These  frequency  intervals  are  called  forbidden  zones. 
Results  of  our  investigations  of  the  structure  of 
electromagnetic  oscillations  in  these  intervals  are 
represented.  Such  oscillations  are  similar  to  standing 
waves in the structures bounded from two sides that are 
the superposition of two travelling waves which move 
in  opposite  directions.  Generally,  outside  passbands 
there are two kinds of eigen-oscillations: one decreases 
and another increases from the point of excitation. For 
semi-bounded mediums the increasing oscillations  are 
not  excited,  and  for  waveguides,  bounded  from two-
side,  two  oscillations  are  always  excited,  but  the 
amplitude of the increased one, as a rule, is small.

Our  results  have  shown  that  in  the  case  of 
forbidden zone in the systems bounded from two sides 
there are situations when excited are mainly oscillations 
only of one type - being increased or decreased.

1. CAVITY CHAIN
The  interest  to  a  research  of  non-propagating 

oscillations in periodic systems was caused by our study 
of performances of injector systems on the basis of the 
standing  waves.  Such  injectors  form  high  -quality 
beams and accelerate them up to enough large energies 
[2,  3].  In  the  standing  -wave  injector  systems  the 
klystrom  bunching  mechanism  is  combined  with 
acceleration. For this purpose it is necessary to create a 
special field distribution in which amplitudes increase 
from  the  initial  injection  point  and  there  must  be 
sufficiently long gaps without fields. Such distribution 
can be easily created by a selection of cavity coupling 
coefficients. Indeed, if the cavity chain can be described 
by equations
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then the field amplitudes  nA at this frequency  gω=ω  
is related by such a correlation

1nn1n1n A/A −−+ ββ−= .            (1.3)
If  1/ n1n >ββ − ( 1/ n1n <ββ − ),  field  amplitudes  are 
increasing  (decreasing).  Such  question  can  be  asked: 

what physical reasons are responsible for so nontrivial 
amplitude distribution?

To  give  answer  on  this  question  we  shall 
consider the electrodynamic characteristics of a simple 
chain of cylindrical cavities with coupling through small 
cylindrical  holes  in  separating  cavity  walls  with  zero 
thickness.  We  consider  the  case  when  the  cavity 
geometric  sizes  and  the  hole  radii  are  altered 
periodically.

We  denote  by  nA  amplitudes  of  Е010 

oscillations in the cavities with length 1d  and radius 1b
, and by nB  amplitudes in the cavities with length 2d  
and radius 2b . We denote the hole radii by 1a  and 2a .

The set of equations for amplitudes has the form
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Since the system under consideration is periodic, 
the amplitudes fulfil such conditions

n 1 n n 1 nA A ; B B+ += ρ = ρ                (1.5)
It  is  easy  to  show,  that  at  fixed  frequency  equations 
(1.4)  have  nonzero  solutions  for  two  values  of  the 
parameter ρ :
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where Q is determined by the expression
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If  1=ρ ( 1Q < ), we have wave process, otherwise  (

1Q > ) - non-propagation. Analysis of dependence of 

Q  on  ω  shows  that  at  1,c0 ω<ω<  -  Q > 1, 

2,c1,c ω<ω<ω  -  -1 < Q <1,  3,c2,c ω<ω<ω  -  Q<-1, 

4,c3,c ω<ω<ω  - -1 < Q < 1, 4,cω>ω  - Q>1. 
Thus,  byperiodical  cavity  chain  has  two 

passbands separated by a forbidden zone. Q reaches the 
minimum value at frequency
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For  21 aa =  and fulfillment of the condition (1.2), the 
intermediate forbidden zone vanishes ( 1)(Q −=ω ∗ ) and 
so-  called structure  compensation  happens  [4],  but  in 
this  case  21 β=β  and  creating  the  increasing 
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(decreasing) distribution becomes impossible. In order 
to  make values  of amplitudes  in  intermediate  cavities 
equal zero, it is necessary to create the standing wave 
mode  [4].  If  21 aa ≠ ,  then  21 β≠β  and  the 
intermediate  forbidden zone does not  disappear  under 
any circumstances  ( 1)(Q −<ω ∗ ), and condition (1.2) is 
reduced to the demand that the working frequency be 
equal  to  the  mean  frequency  of  the  forbidden  zone 

∗ω=ω g .  Thus,  the  creation  of  the  increasing 
(decreasing)  distribution  requires  working  in  the 
forbidden zone.

Let us consider in more details structure of such 
oscillations. It follows from the system (1.4), that when 
the  cavity  frequencies  (including  the  coupling  shifts) 
tend to the frequency that corresponds to the middle of 
the  forbidden  zone  2
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and 1ρ=ρ  the ratio Bn/An at  ∗ω=ω  tends to infinity, 
that  is  possible  only  in  one  case:  0A n → .  When 

2ρ=ρ  the ratio Bn/An tends to zero, i.e. 0Bn → .
So, for two fundamental solutions in the middle 

of  the  forbidden  zone  the  field  structure  has  an 
interesting feature, both for the increasing solution and 
for  decreasing  one.  There  is  a  sequence  of  cavities 
(located through one) in which amplitudes are equal to 
zero.  And,  if  for  an  increasing  solution  such  cavities 
adjoin at the left to diaphragms with large holes, then 
for  the  case  of  decreasing  solution  they  do  to 
diaphragms with small holes.

Such a character of distribution of fields of non-
propagating electromagnetic waves allows to create in 
the systems bounded from two sides the field 
distribution that corresponds to the field distribution of 
one from two fundamental solutions of a boundless 
case. The possibility follows from the circumstance, that 
the general solution of linear homogeneous equations is 
equal to the sum of partial solutions with unknown 
constants, which are determined from boundary 
conditions. Thus, by studying properties of fundamental 
solutions in a boundless system, we always know about 
possible distribution of a field in the bounded structure.

If  we  cut  out  a  finite  part  of  the  biperiodical 
waveguide, ending it by a cavity which at the left has a 
diaphragm with a large hole, and makes some frequency 
shift  in  this  cavity,  we  shall  create  a  condition  for 
supporting a field distribution that  is  appropriate  to a 
decreasing fundamental solution. As was shown above, 
for such a solution the amplitudes of a field in cavities 
adjoin the diaphragms with large holes equal to zero, 
and for an increasing solution in cavities they adjoin the 
diaphragms with small holes equal to zero. Therefore in 
our case the amplitude of an increasing solution will be 
equal to zero. If we end a system by a cavity, which at 
the left side has a diaphragm with a small hole, we shall 
create a condition for supporting a field distribution that 
is appropriate to an increasing fundamental solution.

Thus,  selecting  in  appropriate  way  boundary 
conditions,  we  can  create  in  the  bounded 
electrodynamic  system  the  distribution  of  amplitudes 
that is appropriate only to one fundamental solution. It 
must be noted that it is possible only in the  forbidden 

zone  and  only  in  case  of  a  vanishing  amplitudes  in 
certain number of resonators. Within the passband these 
requests are defaulted.

On  the  one  hand,  such  electromagnetic 
oscillations of the bounded volumes are similar to well-
known  eigen  oscillations  of  resonators,  which  are 
obtained  by  partitioning  a  smooth  or  periodic 
waveguide by conducting plane walls with a frequency 
that lays in a passband of the waveguide, as they also do 
not transfer energy. On the other hand, the process of 
filling  such  volumes  with  electromagnetic  energy  is 
much different, as the non-propagating wave is excited.

2. MULTI-LAYER DIELECTRIC
Let  us  consider  properties  of  eigen 

electromagnetic oscillations in a multi-layer dielectric, 
which represents periodically repeating along the axis z 
a set of laminae with thickness  1d  and  2d  and with 
permittivity  1ε end  2ε .  In transversal directions (x, y) 
the  laminae  are  not  bounded.  We  consider  the 
elementary  type  of  electromagnetic  oscillations,  in 
which the field strength does not depend on transversal 
coordinates. We assume the time dependence be tie ω− . 
For  this  case  the  electromagnetic  oscillations  are 
described  only  by  two  components  Ex and  Hy. 
Dependence of these components from the longitudinal 
coordinate z can be found from the Maxwell equations 
and for two arbitrary selected adjoining laminae (i=1,2), 
from which the numbering periods (s = 0) are started, 
field components can be written as:
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where c/k iz,i εω= , and  )(
iE ±  are constants.

As the system under consideration is periodic along the 
axis z with a period  D=d1+d2,  field components within 
the period with a number s will be determined by the 
expression:
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where  ρ  is  some complex number. Similarly, one can 

write the expression for )s(
i,yH . It is easy to show that at 

a  fixed  frequency  the  boundary  conditions  for  field 
components  are  fulfilled  only  for  two  values  of  the 
parameter ρ [5]:
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where Q is determined by expression
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Fig.1  shows  the  dependence  of  Q  on  the 

dimensionless frequency  λ=πω=Ω /D)c2/(D for the 
case  when  d1=d2=D/2.  One  can  see  that  in  certain 
frequency  intervals  1Q > ,  i.e.  there  are  forbidden 
zones. Let us consider a structure of an electrical field in 
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the first  forbidden zone. Dependencies of the modulus 
of Ex on the longitudinal coordinate D/z=ξ within one 
period ( Ω =0.3, the middle of the first forbidden zone, 

0d/dQ ≈Ω )  are  shown  in  Fig.2.  For  this  case 
Q=-1.2333 and 1ρ =-0.5278, 2ρ =-1.8948.
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From Fig.2 it follows, that both non-propagating eigen 
oscillations of multi-layer dielectric have an interesting 
feature - in certain planes perpendicular to axis z- the 
tangential component of an electrical field equals zero. 
And for two fundamental solutions these planes do not 
coincide.  Putting in these places metal  plates,  we can 
effectively control the field distribution.
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As  was  already  mentioned  above,  a  general 

solution of our electrodynamic problem is represented 
as  the  sum  of  two  fundamental  (partial)  solutions 

( ) ( )zEC)z(ECzE 2211 += . If the metal plate is located 
at ∗= zz , such condition must be fulfilled

( ) 0zEC)z(EC 2211 =+ ∗∗  ,             (2.5)
from which it follows that if 0)z(E1 =∗  ( 0)z(E 2 =∗ ), 
then С2=0 (С1=0). Thus, for definite ∗z , we can create 
the  field  distribution  that  appropriate  only  to  one 
fundamental  solution,  i.e.  either  pure  increasing  or 
decreasing one.

Using  this  circumstance,  we  can,  at  first, 
essentially  change  performances  of  waves  reflected 
from a finite number of dielectric layers lying on the 
metal plate.  Secondly,  one  can  create  dielectric 
resonance  systems  which  have  oscillations 
withincreasing (decreasing) field distributions along the 
coordinate z.
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