СТРУКТУРА ТОНКИХ ПЛЕНОК С₆₀ НА (100) NaCl

Н.И. Горбенко, А.Т. Пугачев, Х. Саадли, Н.П. Чуракова

Национальный технический университет "Харьковский политехнический институт", г. Харьков, Украина, pugachov@kpi.kharkov.ua

Электрономікроскопічними методами досліджена структура плівок фуллеріту С₆₀, сконденсованих у вакуумі на поверхню кристалів (100) NaCl, які знаходились при T = 240 К. При кімнатній температурі плівки мали ГЦК-гратку та (111) орієнтировку. Знайдені кристалографічні умови спряження поверхні (100) NaCl та орієнтованих плівок С₆₀, установлено двухпозиційний характер їх структури.

Электронно-микроскопическими методами исследована структура пленок фуллерита C_{60} , сконденсированных в вакууме на поверхность кристаллов (100) NaCl, находящихся при T = 240 К. При комнатной температуре пленки имели ГЦК-решетку и (111) ориентировку. Определены кристаллографические условия сопряжения поверхности (100) NaCl и ориентированных пленок C_{60} , установлен двухпозиционный характер их структуры.

The structure of thin C_{60} fullerite films prepared by evaporation and condensation in a vacuum of C_{60} molecules on a surface (100) of NaCl are investigated by electron-optical methods. The substrate temperature was in the range 240 K. At room temperature of the films had a fcc lattice and (111) orientation. The crystallographic conditions of the conjugation of the (100) surface NaCl and the oriented C_{60} fullerite films and the two-position character of their structure were determined.

Открытие стабильных многоатомных кластеров - фуллеренов C_n (n = ...60, 70,...), нанотрубок и методов их получения привело к созданию нового класса углеродных твердых тел (фуллеритов) со своими проблемами, объектами исследования и перспективами их практического применения [1-3]. Наибольшее внимание привлекли фуллериты С₆₀, которые при комнатной температуре и нормальном давлении кристаллизуются в гранецентрированную кубическую (ГЦК) решетку с параметром 1,42 нм. При температуре 260 К ГЦК-решетка переходит в простую кубическую (ПК). При этом переходе ГЦК- $\rightarrow \Pi K$ кластеры C₆₀ остаются в тех же позициях, но осью 3-го порядка начинают ориентироваться вдоль [111] направления кристалла. Самостоятельный интерес представляют исследования С₆₀ в тонкопленочном состоянии благодаря возможности вариации структуры, субструктуры, морфологии при изменении условий конденсации. Так, при изменении температуры подложки от 290 до 370 К структура изменялась от нанодисперсной до (111) ориентированной с четырехпозиционной структурой [4].

Настоящая работа посвящена электроно-графическому и электронно-микроскопическому исследованию тонких пленок фуллерита C_{60} , конденсированных при температуре подложки ~ 240 К. Пленки фуллерита C_{60} получены методом испарения и конденсации в вакууме ~ 10^{-3} Па монокристалликов C_{60} чистотой не хуже 99,9 %.

Исходные кристаллики фуллерита были предварительно исследованы рентгенографическим мето-

дом в медном излучении. Параметр решетки при T = 293 K был равен (1,418 ± 0,001) нм.

Кристаллы фуллерита испарялись из кварцевого тигля, нагреваемого молибденовой спиралью до температуры ~ 800 К. Подложкой служили (100) сколы NaCl. Испарялись отдельные кристаллики, масса которых не превышала ~ 10⁻³ г. Толщина пленок определялась по сдвигу частоты калиброванного кварцевого вибратора. Интервал толщин исследуемых пленок составлял 3...30 нм.

Для последующих электронографических и электронно-микроскопических исследований пленки отделялись в воде и вылавливались на медные электронно-микроскопические сеточки. Пленка фуллерита вылавливалась так, чтобы ее край, указывающий направление [100] NaCl, был параллелен стороне ячейки сеточки. В электронографе сеточки с пленкой фотографировались на фотопластинку с электронограммой. Условия съемки обеспечивали отсутствие поворота между сеточкой и ее изображением. Благодаря этому фотопластинка с электронограммой содержала также информацию об [100] направлении NaCl. Этот экспериментальный прием упрощал последующий анализ электронограмм и позволял установить кристаллографические направления, по которым пленка фуллерита сопряжена с подложкой.

Параметр решетки пленок определялся методом дифракции быстрых электронов на просвет с применением эталона. Эталоном служила тонкая отожженная пленка алюминия толщиной ~50 нм. Образец и эталон помещались в приставку электронографа и располагались в одной плоскости, которая была перпендикулярна электронному пучку. Электронный пучок проходил одновременно через образец и эталон. Получаемые при этом электронограммы от образца и эталона снимали на одну фотопластинку для прецизионного определения постоянной электронографа $2L\lambda$ (L – расстояние от исследуемого образца до фотопластинки, λ - длина волны электронов).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По данным электронографических и электронномикроскопических исследований пленки фуллерита С₆₀ для указанного выше интервала толщин и температуры подложки были сплошными и имели при комнатной температуре ГЦК-решетку. Электронограммы содержали отражения типа (220) и (422), характерные для (111)-ориентировки (рис.1,а). Следует особо отметить, что при перемещении пленки под электронным пучком на расстояния ±3 мм вид дифракционной картины не изменялся, что свидетельствует в пользу монокристалличности. Однако этот вывод не подтверждался электронномикроскопическими исследованиями. Темнопольные снимки от пленок С₆₀ в свете рефлексов (220) свидетельствовали о поликристалличности их структуры. Более того, полученные электронограммы от пленок С₆₀ существенно отличались от теоретически ожидаемой для (111) ориентированной монокристальной

пленки (см. рис. 1, б). Эти отличия сводились к следующему: наблюдалось по 12 рефлексов типа (220) и (422) вместо 6 ожидаемых для указанной ориентации; по данным прецизионных измерений углы между соседними рефлексами составляли (30 ± 0,1)°; на одном радиус-векторе г_{hkl}, проведенном из нулевого узла обратного пространства (центр электронограммы), лежали рефлексы типа (220) и (422); присутствовали запрещенные структурным фактором для ГЦК-решетки рефлексы с межплоскостными расстояниями d = 0,86, 0,43 нм, которые воспроизводят расположение основных рефлексов.

Из рис. 1, а следует, что направление [100] NaCl параллельно радиус-вектору, на котором расположены рефлексы (220) и (422). Это означает, что (111) ориентированная пленка С₆₀ сопряжена с подложкой согласно следующим ориентационным соотношени-ям:

 $(111) [110] C_{60} || (100) [100] NaCl, \qquad (1)$

$$(111) [1\overline{1}2] C_{60} || (100)[100] NaCl,$$
(2)

Одновременное выполнение соотношений (1) и (2) означает, что пленка содержит два типа (111) ориентированных кристалликов, повернутых друг относительно друга на 90°. Электронограмма от такой пленки должна представлять собой суперпозицию двух электронограмм от (111) ориентированных монокристальных пленок, повернутых друг относительно друга на 90°.

Рис.1. Электронограммы: а – экспериментальная от пленок С₆₀, осажденных на (100) NaCl при T_n = 240 K, ребро ячейки сеточки указывает направление [100] NaCl; б – теоретическая для (111) монокристаллической пленки с ГЦК-решеткой

На рис. 2 представлена двухпозиционная модель структуры для этих ориентационных соотношений сопряжения пленки C_{60} и (100) NaCl. Таким образом, появление на электронограммах от тонких пленок фуллерита C_{60} с ориентировкой (111) дополнительных рефлексов типа (220) и (422) и их взаимное расположение хорошо объясняются моделью структуры, сформированной в результате зарождения и роста (111) ориентированных в двух эквивалентных позициях кристалликов C_{60} на поверхности (100) NaCl. Как отмечалось выше, электронограммы содержали запрещенные структурным фактором для ГЦК-решетки рефлексы, которые могут быть идентифицированы как рефлексы типа 1/3 (422) и 2/3 (422), обусловленные дефектами упаковки [5, 6]. Для ориентировки (111) пленку с ГЦК-решеткой можно представить в виде последовательности чередующихся слоев ABC, ABC.... Если по толщине пленки число слоев не равно 3n, где n – целое число, появляются указанные выше дополнительные рефлексы.

Отсюда следует, что при малых (~10 нм и менее) толщинах и значении межплоскостных расстояний фуллерита d₁₁₁ = 0,82 нм интенсивность этих рефлексов может быть сравнима с интенсивностью основных рефлексов и должна уменьшаться с увеличением толщины. Такая ситуация наблюдается экспериментально в исследованных пленках фуллерита С₆₀. При этом двухпозиционность структуры увеличивает количество экстра-рефлексов до 12, и они воспроизводят расположение матричных рефлексов. В заключение следует определить место исследованных пленок в традиционной классификации поликристаллических, текстурированных и монокристаллических объектов. По совершенству структуры исследуемые ориентированные пленки фуллерита С₆₀ с двухпозиционной структурой, несмотря на точечный вид электронограмм, снятых в широком электронном пучке, являются промежуточными между текстурированными и монокристаллическими.

ЛИТЕРАТУРА

- В.М. Локтев. Легированный фуллерит первый трехмерный органический сверхпроводник // Физика низких температур. 1992, т.18, №3, с. 217-237.
- А.В. Елецкий, Б.М. Смирнов. Фуллерены // Успехи физических наук. 1993, т.163, №2, с. 33-66.
- А.В. Елецкий. Углеродные нанотрубки // Успехи физических наук. 1997, т.167, №7, с. 945-971.
- А.Т. Пугачев, Н.П. Чуракова, Н.И. Горбенко, Х.Саадли, А.А. Солодовник. Структура и параметр решетки тонких пленок С₆₀ // Физика низких температур. 1999, т.25, №3, с. 298-304.
- D. Cherns. Direct resolution of surface atomic steps by transmission electron microscopy // *Philos. Mag.* 1974, v.30, p. 549.
- W.B. Zhao,X.-D. Zhang, K.-I. Zuo et al. Growth and structure of C₆₀ thin films on NaCl, glass and mica substrates // *Thin Solid Films*. 1993, v.232, N2, p. 149-153.