Л.И.Гладких, О.Н.Григорьев^{*}, О.В.Соболь, А.Т.Пугачев, Е.А.Соболь, С.В.Мартынюк Национальный технический университет «ХПИ», г.Харьков, Украина; ^{*}Институт проблем материаловедения, г.Киев, Украина

У роботі проведене дослідження структури композиційної кераміки Ti_2-Cr_2 , $Ti_2-W_2B_5$ і проаналізован зв'язок структури з твердістю та міцністю. Встановлено, що: 1) у квазібінарних системах $Ti_2-W_2B_5$ і TiB_2-CrB_2 , при утворенні твердого розчину домінантною структурою є TiB_2 - фаза; 2) анізотропна зміна періодів *a* та *c* при утворенні твердого розчину ($Ti,W)B_2$ може бути викликана конкуруючим впливом розчинених атомів вольфраму і надлишкової концентрації атомів бора; 3) підвищення температури гарячого пресування, що приводить до формування однофазних твердих розчинів, хоча і сприяє одержанню більш щільних керамічних матеріалів, але не забезпечує оптимізації їх прочностних характеристик.

В работе проведено исследование структуры композиционной керамики TiB_2 - CrB_2 . TiB_2 - W_2B_5 и проанализирована связь структуры с твердостью и прочностью. Установлено, что: 1) в квазибинарных системах TiB_2 - W_2B_5 и TiB_2 - CrB_2 , при образовании твердого раствора доминантной структурой является TiB_2 - фаза; 2) анизотропное изменение периодов *a* и *c* при образовании твердого раствора (Ti,W) B_2 может быть вызвано конкурирующим влиянием растворенных атомов вольфрама и избыточной концентрации атомов бора; 3) повышение температуры горячего прессования, приводящее к формированию однофазных твердых растворов, хотя и способствует получению более плотных керамических материалов, но не обеспечивает оптимизации их прочностных характеристик.

Structure of composite ceramic TiB_2 - CrB_2 and TiB_2 - W_2B_5 were investigated and structure dependencies of their hardness and strength were analyzed in the work. It was found that 1) in quasi-binar systems TiB_2 - W_2B_5 and TiB_2 - CrB_2 , the predominant phase has TiB_2 - structure under solid solution occurrence; 2)variation of anisotropic lattice parameter a and c under solid solution (Ti,W) B_2 occurrence may be caused by competing influence between tungsten atoms and the excess of boron atoms in solid solution; 3) increasing temperature of hot pressing leading to formation of single-phase solid solutions resulted in more dense ceramic materials, but did not provides optimal strength properties.

введение

Диборид титана TiB₂ по сравнению с другими диборидами переходных металлов IV-VI групп обладает наибольшей жесткостью решетки [1], о чем свидетельствует его высокая твердость и температура плавления. Кроме того, присущие дибориду титана низкий удельный вес и высокая химическая стабильность [2] делают его одним из наиболее перспективных материалов при создании деталей с высокой износо- и термостойкостью. Однако сильные ковалентные связи, присущие фазе ТіВ₂, приводят к низкой пластичности и невысокой прочности на изгиб и разрыв, что в значительной степени ограничивает область применения керамики. Поэтому в настоящее время изыскивают пути создания композиционных материалов на основе диборида титана в сочетании с более пластичными материалами, выполняющими роль связки. Как показали исследования [2], использование в качестве связки металлов (Fe, Co, Ni) не приводит к желаемому результату изза реакции этих металлов с ТіВ2 при спекании с образованием метастабильных хрупких боридов металлов связки. Литературные данные [2,3] свидетельствуют о перспективности использования в качестве связки сплавов (Ti-Al, Fe-Ni, Ti-Co-Al, Ti-Fe-Ni). Однако и в этом случае достичь повышения прочности композиционного материала на основе диборида титана при сохранении высокой твердости и износостойкости в настоящее время не удается. В этой связи особую актуальность приобретают работы по получению композитов на основе квазибинарных систем боридов переходных металлов, которые позволяют повышать прочность и трещиностойкость материала при сохранении высокой твердости и химической стойкости.

В данной работе рассматривались квазибинарные системы на основе TiB₂, в качестве второй составляющей которой выбирался борид металла VI группы с гексагональной решеткой (CrB₂ и W₂B₅), но с разным структурным типом. CrB₂ имеет тот же структурный тип, что и TiB₂-фаза (тип AlB₂, соотношение периодов $c/a\approx1$). В бориде вольфрама ослабление ковалентных связей W-B в результате увеличения степени заполнения d-уровня вольфрама приводит к появлению нового структурного типа – W₂B₅ с периодом решетки *c*, значительно превышающим период *a* (соотношение *c/a* =4.65). И хотя истинный состав фазы W₂B₅ изменяется в пределах от WB₂ до WB_{2.27} [4], она описывается структурным типом «W₂B₅».

В квазибинарной системе TiB₂-CrB₂ наблюдается полная взаимная растворимость при температуре выше 2000°С и расслоение на TiB₂ и (Cr,Ti)B₂ при температуре ниже 2000°С и концентрации CrB₂ менее 65 об.%[4]. Квазибинарная система TiB₂-W₂B₅ характеризуется диаграммой состояния эвтектического типа с ограниченной растворимостью в твердом состоянии. Максимальная растворимость W₂B₅ в TiB₂ достигает 63 мол.% при эвтектической температуре, в то время как растворение борида титана в бориде вольфрама при той же температуре ограничено 3 мол.%. Несмотря на большое внимание, которое уделяется этим системам в литературе, данных для установления закономерностей формирования фазового состава и структуры в зависимости от условий получения композиционных керамических материалов на основе диборида титана явно недостаточно. Поэтому в задачу данной работы входило исследование фазового состава, структурных и субструктурных характеристик керамики в зависимости от температуры горячего прессования (Т_{гп}) и состава исходной шихты.

ОБРАЗЦЫ И МЕТОДИКА ИССЛЕДОВНИЯ

Исследования выполнялись на образцах горячепрессованной керамики. Состав шихты задавался массовым (объемным) содержанием порошковых составляющих компонент. Размол-смешивание шихты производили в планетарной мельнице в течение 3... 10 ч. Стенки барабанов и размольные тела были выполнены из горячепрессованного карбида бора.

Смеси компактировали горячим прессованием на установке с индукционным нагревом в графитовых пресс-формах без защитной атмосферы. Давление прессования составляло 30...33 МПа, скорость нагрева 120°С/мин, время спекания 30...60 мин. Температура горячего прессования выбиралась, исходя из квазибинарных диаграмм состояния исследуемых композиций [4], и составляла для системы TiB₂-CrB₂: 1800 и 2000°С, а для ТіВ₂-W₂B₅ - 1700 и 2100° С. Для системы TiB₂-CrB₂ при указанных температурах подвергались спеканию порошки составов: 100% TiB₂, 70 oб.% TiB₂ - 30 oб.% CrB₂, 100% CrB₂, а для системы TiB₂-W₂B₅ при 1700°С: 50 об.% TiB₂ -50 об.% W2B5 при 2100°С: 100% W2B5, 92 об.% ТіВ2-8 об.% W2B5. 50 об.% ТіВ2-50 об.% W2B5. Охлаждение осуществлялось от температуры спекания до комнатной температуры со скоростью 100°С/мин. Полученные таким образом горячепрессованные образцы подвергались обработке на алмазных кругах для придания им необходимых размеров в виде стержней размером 36х5х3.5 мм с последующей полировкой.

Концентрация металлических атомов в спеченных композитах контролировалась методом рентгенфлюоресцентного анализа на установке «СПРУТ-2». Фазовый состав, структурные и субструктурные характеристики определялись методами рентгеновской дифрактометрии. Исследования проводились на установках ДРОН-2 и ДРОН-3 в фильтрованных излучениях Fe-K_α и Cu-K_α.

Прочность на изгиб определяли при трехточечном нагружении с базой 30 мм.

КВАЗИБИНАРНАЯ СИСТЕМА TiB₂-CrB₂

Рентгендифрактометрия горячепрессованных образцов 70 об.% TiB₂-30 об.% CrB₂ показала, что как для образца, полученного при 1800°С, так и для образца, полученного при 2000°С, выявлялась система линий, присущая TiB₂. Об образовании твердого раствора замещения на основе TiB₂, обозначаемого на диаграмме состояния как (Ti,Cr)B₂, свидетельствует уменьшение периодов решетки TiB₂ (табл.1).

По изменению периодов решетки можно оценить концентрацию атомов Cr в твердом растворе (Ti,Cr)В₂, используя правило Вегарда. С учетом различия атомных радиусов титана (R_{Ti}) и хрома (R_{Cr}) в их диборидах изменение периодов решетки твердого раствора по Вегарду составляет $\Delta a = -0.0062 \, \alpha_{\rm Cr}$, а $\Delta c = -0.0066 \alpha_{Cr}$, где α_{Cr} – концентрация атомов хрома в решетке (Ti,Cr)B₂. Сопоставляя расчетные и экспериментальные значения периодов решетки а и с, можно сделать вывод, что изменение периода а описывается линейной зависимостью, а с – не подчиняется правилу Вегарда. Изменение периода с описывается соотношением а $\Delta c = -0.0162 \alpha_{Cr}$, что 2.6 раза превышает расчет по Вегарду. Это свидетельствует о том, что даже при соотношении $c/a \approx 1$ в гексагональной решетке диборидов из-за различия в силах связи внутри и между слоями, корректное использование правила Вегарда возможно при расчете изменения периода в слое с металлическими атомами. Оценка концентрации хрома в решетке диборида титана в образцах по периоду а согласуется с концентрацией, полученной из данных элементного анализа: 34 ат% хрома при Т_{гп} =1800°С и 30 ат.% хрома при Т_{гп} =2000°С.

Таблица 1

Значения периодов решетки исследуемых образцов в зависимости от температуры горячего

прессования				
Образцы	а, нм	С, НМ	c/a	
ТіВ ₂ (порошок)	0.3031	0.3231	1.066	
TiB ₂ , 1800°C	0.3027	0.3230	1.067	
TiB ₂ ,2000°C	0.3026	0.3.230	1.067	
CrB ₂ ,2000°C	0.2971	0.3068	1.032	
(Ti,Cr)B ₂ , 1800°C	0.3008	0.3171	1.054	
(Ti,Cr)B ₂ , 2000°C	0.3010	0.3177	1.055	

Образование твердого раствора (TiCr)В₂ сопровождается не только изменением периодов решетки, но и уширением дифракционных линий. Если для образца, полученного горячим прессованием порошка TiB₂, ширина дифракционных линий с различным сочетанием индексов отражающих плоскостей: (100), (200), (201) и (112) увеличивается монотонно с увеличением угла отражения, то для твердого раствора (Ti,Cr)B₂ такая монотонность нарушается, и наблюдается резкое увеличение ширины отражения от плоскостей (112), занимающих промежуточное положение между базисными и призматическими плоскостями. Такое поведение может быть связано с анизотропией упругих и теплофизических характеристик, которая появляется при замещении атомов титана атомами хрома и образовании твердого раствора (Ti,Cr)B₂.

КВАЗИБИНАРНАЯ СИСТЕМА ТІВ₂-W₂B₅

Система TiB_2 - W_2B_5 изучалась на композиционных образцах, обозначенных в работе как K1 (92 об.% TiB_2 -806.% W_2B_5 , 2100°C), K2 (50 об.% TiB_2 -50 об.% W_2B_5 , 2100°C) и K3 (50 об.% TiB_2 - 50 об.% W_2B_5 , 1700°C).

На дифрактограммах образцов К1 и К2 выявляются дифракционные линии, соответствующие структурному типу AlB₂. Линии W₂B₅ рентгенографически не выявляются. Отметим, что при исходном составе шихты, содержащей W₂B₅-фазу в количестве 8 и 50 объемных %, однофазный твердый раствор (Ti, W)B₂ может наблюдаться при температурах 1500 и 2000°С соответственно. При более низких температурах должен происходить распад твердого раствора с образованием механической смеси (Ti,W)B₂ и (W,Ti)B₂ [4]. Отсутствие второй фазы в исследованных образцах К1 и К2 означает, что при охлаждении от температуры горячего прессования до комнатной формируется неравновесное состояние в виде пересыщенного твердого раствора (Ti,W)В2 как результат закалки. Этот вывод подтверждается также данными о периодах решетки. Для этих образцов наблюдается следующее изменение периодов решетки по сравнению с периодами решетки керамики:

Образец K1: $\Delta a = 0.3030 - 0.3028 = + 2 \cdot 10^{-4}$ нм, $\Delta c = 0.3225 - 0.3230 = -5 \cdot 10^{-4}$ нм Образец K2: $\Delta a = 0.3034 - 0.3028 = +6 \cdot 10^{-4}$ нм, $\Delta c = 0.3182 - 0.3230 = -50 \cdot 10^{-4}$ нм

Видно, что эффект изменения периодов тем больше, чем больше объемное содержание W_2B_5 . Однако наблюдается анизотропное изменение периодов *a* и *c*: период *a* увеличивается, *c* –уменьшается, а *c/a* уменьшается при этом до 1.048 (рис.1,2).

Рис.1. Зависимость периодов решетки а и с диборида титана от объемного содержания W₂B₅

Рис.2. Зависимость отношения периодов решетки с/а в дибориде титана от объемного содержания W₂B₅

Наблюдаемое анизотропное изменение периодов решетки TiB₂ не может быть объяснено только тем, что атомы W, имеющие меньший атомный радиус, входят в решетку по типу замещения при образовании твердого раствора (Ti, W)B₂. Действительно, как было показано на примере системы TiB₂-CrB₂, период *а* в этом случае должен изменяться в соответствии с правилом Вегарда, т.е. $\Delta a/a = [(R_{Ti} - R_W)/R_{Ti}]$ α_W , где α_W – атомная концентрация W в твердом растворе. Подставляя значения R_{Ti} и R_W , взятые для диборидов [1], получаем: $\Delta a = -0.046\alpha_W$ (соотношения весовых и атомных % Ti и W в твердом растворе по данным рентгеновского флуоресцентного анализа приведены в табл. 2).

Таблица 2

Данные элементного анализа образцов системы ТіВ--W-В-

1122 (1223						
Образец	Ti		W			
	масс. %	ат. %	Macc. %	ат. %		
K1	73.5	91.8	26.5	8.2		
К2	20.2	49.0	79.8	51.0		
К3	24.7	56.0	75.3	44.0		

Таким образом, замещение атомами W атомов Ti в решетке (Ti, W)B₂ должно привести к уменьшению периода a до 0.3024нм (K1) и 0.3004 нм (K2). Однако экспериментально наблюдается увеличение периода a. Изменение периода c (с учетом того, что между плотноупакованными плоскостями Ti располагаются «графитоподобные» слои бора) может, как и в случае образования (Ti,Cr)B₂-фазы, отличаться от линейной зависимости рассчитанной по Вегарду, однако при замещении больших по размеру атомов Ti атомами W с меньшим радиусом, период c также должен уменьшаться.

Исходя из того, что в фазе W2B5 с истинным составом, близким к WB_{2.27} [1,4,5], имеется избыток атомов бора по сравнению с ТіВ2 и полагая, что избыточное содержание атомов бора сохраняется и в твердом растворе (Ti, W)В₂, можно сделать вывод, что наиболее вероятным местом их расположения являются междоузлия в решетке TiB2. Анализ показывает, что центры наибольших междоузлий в гексагональной ячейке TiB2 имеют следующие индексы: [[1/3 2/3 0, 2/3 1/3 0]]. Каждое из таких междоузлий образовано двумя трехгранными призмами (рис. 3). Его размеры вдоль направлений [120], [210], лежащих в базисных плоскостях атомов Ті, составляют 0.0234 нм и вдоль направлений [001] - 0.074 нм. Видно, что междоузлие не является симметричным. Это означает, что введение атома бора ($r_B = 0.0875$ нм) в такое междоузлие должно приводить к увеличению обоих периодов а и с, однако эффект изменения а в сторону его увеличения должен быть больше, чем изменение с. Расчеты по изменению периода а показывают, что избыточная концентрация атомов бора для образца К1 составляет 0.51ат%, а для образца К2 - 2.75 ат.%, что в пересчете на состав борида вольфрама, участвующего в образовании твердого раствора, соответствует формуле WB223-225. С учетом увеличения периода *c*, связанного с внедрением избыточного бора, его изменение в результате замещения описывается соотношением $\Delta c = -0.0095 \alpha_{\rm W}$, что в 2.1 раза превышает значения, полученные при расчете по Вегарду.

Рис.3. Элементарная ячейка ТіВ₂ и расположение в ней междоузлия

Образец КЗ отличался от образца К2 только температурой горячего прессования (1700°С). По диаграмме состояния образец должен был быть двухфазным уже при температуре спекания. Рентгендифрактометрические исследования подтвердили наличие двух фаз ((Ti,W)B₂ и W₂B₅) в образце, охлажденном до комнатной температуры. Характер изменения *а* и *с* в дибориде титана остается таким же, как и для образцов К1 и К2: *а* увеличивается, *с* уменьшается. Однако малая величина изменения 2- 10^{-4} нм свидетельствует о растворении в решетке диборида титана менее 4 ат.% вольфрама.

Периоды решетки *а* и *с* фазы W₂B₅ были увеличены по сравнению с исходными для порошка W₂B₅ и составляли: *a*=0.2984 нм, *c*=1.3880 нм, *c/a*= 4.65. При этом, $\Delta a = +2 \cdot 10^{-4}$ нм, $\Delta c = +1 \cdot 10^{-3}$ нм. Важно отметить, оба периода *а* и *с* увеличиваются, то есть изменяются в одном направлении, что хорошо согласуется с представлениями о возможности растворения в решетке W₂B₅ при 1700⁰C 1 мол.% TiB₂ с образованием (W,Ti)B_{2,5}-фазы [5].

ПРОЧНОСТЬ КОМПОЗИЦИОННОЙ КЕРАМИКИ

Прочность спеченной при температуре 1800... 2000⁰С однофазной керамики TiB_2 или W_2B_5 является достаточно высокой, однако не превышает 340 и 455 МПа соответственно. Формирование квазибинарной керамики, содержащей однофазный твердый раствор, приводит к увеличению прочности до 370 МПа (Ti,Cr)B₂, 440 МПа (K2) и 670 МПа (K1) соответственно. Наибольшая прочность 1100 МПа была достигнута на двухфазных образцах системы TiB_2 - W_2B_5 . При этом сохранялась высокой твердость керамики, составляющая 30 ГПа. Характерной особенностью являлось сохранение высокой твердости и у однофазной керамики квазибинарной системы TiB_2 - W_2B_5 (28 ГПа-К1, 24 ГПа-К2).

Так как образцы К2 и К3 имеют близкий элементный состав, то причинами увеличения прочности могут быть различие в пористости образцов или наличие двухфазности со свойственным такому состоянию формированию межфазных напряжений. Сравнение плотности образцов К2 и К3 показало, что плотность образца К3 составляет 5.90 г/см³, – это оказалось не только не выше, но даже ниже плотности 6.18 г/см³, присущей образцу К2. Таким образом, наиболее вероятной причиной увеличения прочности керамики, полученной при T_{гп}=1700⁰C, является развитие межфазных микронапряжений, присущее двухфазным образцам.

ЗАКЛЮЧЕНИЕ

- Установлено, что при скорости охлаждении 100°/мин. в горячепрессованной керамике происхо-дит закалка. В системе TiB₂-CrB₂ в результате закалки стабилизируется твердый раствор (Ti,Cr)B₂, а в системе TiB₂-W₂B₅ – твердый раствор (Ti,W)B₂.
- 2. Образование твердых растворов в системе TiB₂-CrB₂ сопровождается уменьшением периодов решетки *a* и *c* в соответствии с различием их атом-ных радиусов. В системе TiB₂-W₂B₅ наблюдается анизотропное изменение периодов решетки: период *a* увеличивается, *c* уменьшается. Причиной такого различия является конкурирующее влияние атомов вольфрама и избыточных атомов бора в решетке твердого раствора.
- 3. Повышение температуры спекания, приводящее к формированию однофазных твердых растворов, хотя и способствует получению более плотных керамических материалов, но не обеспечивает оптимизации их прочностных характеристик. Последнее может быть достигнуто при использовании режимов получения, приводящих к образованию двухфазных материалов, или путем выделения второй фазы при последующей термообработке. Прочность на изгиб таких материалов в несколько раз может превышать прочность, характерную для диборида титана, и достигать 1000 МПа при сохранении высокой твердости.

ЛИТЕРАТУРА

- 1. Г.В.Самсонов, Т.И.Серебрякова, В.А.Неронов. *Бориды*. М.: «Атомиздат», 1975.
- R.Gonzalez, M.G.Barandika, D. Ona et. al. New binder phases for the consolidation of TiB₂ hardmetals // *Mat. Sci. Engin.* 1996, v.A216, p.185–192.
- A.Hirose, M.Hasegawa, K.F.Kobayashi. Microstructures and mechanical properties of TiB₂ particle reinforced TiAl composites by plasma arc melting process //*Mat. Sci. Engin.* 1997, v.A239-240, p. 46–54.
- Р.Телле, Е.Фендлер, Г.Петцов. Квазитройная система TiB₂-W₂B₅-CrB₂ и её возможности в эволюции керамических твердых материалов //Порошковая металлургия. 1993, №3, с.58–69.
- 5. Ю.Б.Кузьма. *Кристаллохимия боридов*. Львов: «Вища школа», 1983.