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This paper deals with the parametric excitation of potential surface waves (SWs) propagating in a planar plasma-metal 
waveguide structure with a magnetic field perpendicular to the plasma-metal boundary. An external, spatially uniform, 
alternating electric field at the second harmonic of the excited wave is used as the source of parametric excitation. It is 
considered two cases, when the pump field is an eigen perturbation of the system, and when it is a non-eigen one. 
PACS: 52.35.Mw 

 
1. INTRODUCTION 

At present, plasma-metal waveguides are widely used in 
plasma and semiconductor electronics, gas discharges, and 
various plasma technologies [1-4]. In practice many types 
of waveguide structures operate with a magnetic field 
oriented perpendicular to plasma-metal boundary [5-7]. 
Such waveguides are typical of RF and microwave 
discharge devices, magnetrons, Penning sources, magnetic 
discharge pumps, Hall detectors, divertor- and limiter-
equipped fusion systems, devices for the plasma processing 
of metal surfaces, and so on. 

The linear theory of potential SWs at a plasma-metal 
boundary with a such magnetic field configuration has been 
developed fairly well [6, 7], and some nonlinear 
mechanisms for the self-interaction of these SWs have also 
been investigated [8, 9]. However, the construction of a 
nonlinear theory of SWs requires a detailed study of the 
mechanisms for their excitation. In the waveguide structures 
in question, SWs are difficult to excite by charged particles 
because of the presence of an external magnetic field 
perpendicular to the plasma-metal boundary. Our objective 
here is to investigate the efficiency of parametric excitation 
[10] of these waves. 

 
2. PUMP FIELD THRESHOLD AMPLITUDE  
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We analyze the parametric excitation of a high-
frequency SW propagating along a plane plasma-metal 
boundary in the  direction. A nonisothermal plasma 
( , where  and  are the electron and ion plasma 
temperatures, respectively) occupies the half-space  
and is bounded at  by a perfectly conducting metal 
surface. A steady magnetic field 
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 is directed along the 
x  axis, which is perpendicular to the plasma-metal 
boundary. The properties of SWs in an inhomogeneous 
plasma are strongly influenced by the spatial distribution of 
plasma density in the boundary layer. In plasmas with large 
and small density inhomogeneities, the properties of SWs 
are determined by the integral parameters of the plasma in 
the region where the wave field is localized. [3]. In those 
cases, the plasma-metal boundary can be assumed to be 
sharp and the plasma density can be treated as uniform and 

set equal to its mean value in the localization region of the 
SW. Below, the efficiency of the parametric excitation of 
SWs will be considered under the assumptions that the 
plasma-metal boundary is sharp and the plasma is 
homogeneous.  

In [6], it has been shown that, in the waveguide structure 
under consideration, high-frequency potential SWs can be 
excited at frequencies higher than the electron cyclotron 
frequency, ceω>ω . In what follows, we consider the 
parametric excitation of such waves at the boundary 
between a weakly collisional dense plasma ( , 

where  is the electron plasma frequency) and a metal. In 

this case, the wavenumber  and frequency 

22
peω<<ω

peω

k ω  of the 
excited SW are related by [6]  
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where  is the electron thermal velocity. Analysis of 
relation (1) shows that the phase velocity of an SW is much 
higher than the electron thermal velocity.  
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To note, an important property of the waves under study 
is that they are reciprocal [6]. This means that there exist 
two oppositely propagating waves with the same frequency 
ω  and the same (in absolute value) wavenumbers 

)(1 ω= kk  and )(2 ω−= kk . This property makes possible 
parametric excitation of the waves in question due to decay 
instability [12]. That this method is efficient is evidenced by 
the fact that the self-interaction of SWs [8] is accompanied 
by the excitation of purely surface perturbations both at the 
static and second harmonics. Consequently, SWs excited at 
a plasma-metal boundary are not subject to the nonlinear 
damping associated with the excitation of volume modes 
[3], which can result in a loss of energy. 

We assume that the source of parametric excitation is an 
external, spatially uniform electric field oscillating at a 
frequency  0ω  and directed along the external magnetic 
field: 

)cos( 00 tEE ω= .                         (2) 

In this case, the spatiotemporal synchronization 
condition [10] takes the form 



)()(0, 210 ω+ω=ω+ω=ω kk .              (3) 
We can see that the interaction between SWs with the 

frequency  and the pump wave is the most 
efficient.  

2/0ω=ω

The parametric excitation of SWs will be investigated in 
a weakly nonlinear approximation [3, 10], which is valid for 
sufficiently small SW amplitudes and in which the small 
nonlinearity parameters are 1)/( 2

2,12,1 <<=μ TeeVmAe , 

where  are the amplitudes of the excited SWs and 
 are the absolute value of charge and mass of an 

electron, respectively. In this approximation, Poisson’s 
equation and the nonlinear quasi-hydrodynamic equations 
for electron motions in the SW field can be written as: 
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where  is the wave potential, ϕ eV
r

 and  are the 
hydrodynamic velocity and density of the plasma electrons, 
and  is the effective frequency of their collisions. 
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In the weakly nonlinear approximation, we can 

substitute linear expressions [6] into the nonlinear terms in 
quasi-hydrodynamic equations (4) to obtain a set of 
nonlinear equations describing the dependence of the 
amplitudes of SWs on time in their interaction with the 
pump field. It should be kept in mind that, in a weakly 
collisional plasma, the damping of SWs can have a strong 
impact on their excitation. That is why, in analogy with 
[10], we introduce additional terms that take into account a 
weak nonlinear damping of the excited waves. Thus, the 
spatiotemporal dynamics of the excitation of SWs by an 
external, spatially uniform, alternating electric field at the 
second harmonic of the frequency of the excited wave can 
be described by the following set of nonlinear equations: 
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where the coefficient  characterizes the 
interaction of the excited SWs with the pump field; the 
parameter  
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accounts for the influence of the magnetic field and plasma 
density on the efficiency of the wave excitation; 

 is the group 

velocity of the SWs, and  with  
being the electron Debye radius. The upper (lower) sign in 
Eqs. (5) corresponds to the propagation of the first wave in 
the positive (negative) direction along the -axis and the 

propagation of the second wave in the negative (positive) 
direction. In what follows, we consider the temporal 
dynamics of the SW amplitudes in the case in which the 
second terms on the left-hand sides of Eqs. (5) can be 
neglected. 
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Analysis of Eqs. (5) yields the following time 
dependence of the amplitudes of the excited waves: 
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For 20 >α tA , this expression becomes 
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in which case the phases approach the steady-state value 
4/π . 
Expression (7) implies that SWs can be excited under 

the condition 00 >ν−α=γ A . This condition determines 

the threshold amplitude of the pump field crA0 , above 
which the SWs can be excited parametrically: 
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3. NON-RESONANT INTERACTION 

First, let us investigate the saturation of the decay 
instability in the case of non-resonant interaction, i.e. when 

0ω  is non-eigen frequency. To do that, it is necessary to 
consider interactions between harmonics of the wave, 
according to the nonlinear quasi-hydrodynamic equations. It 
gives the following nonlinear equations for the amplitudes 
of the excited SWs (to third order in the field amplitude): 
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where  is the coefficient of self-
interaction of SWs of the given type, obtained in [8], 

 is the coefficient of 
interaction of the both excited waves. 
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Accounting for the self-interaction of each SW and the 
interaction between them violates spatiotemporal 
synchronization condition (3). For the dense plasma under 
consideration, we have 12 β<<β , hence, the nonlinear 
frequency shifts of both the first 
( 2

22
2

111 AANL β+β=ωΔ ) and the second 

( 2
12

2
212 AANL β+β=ωΔ ) excited SWs are governed 

primarily by their self-interaction. Thus, the frequency 
mismatch between the excited SWs and the pump field 
increases with time. As a result, SWs saturate at the same 
amplitude, which is independent of the initial conditions: 
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As time elapses, the phases of the SWs approach the value 
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Numerical solution of equations (9) shows that the time 
required for the phases to reach this value decreases as the 
pump field amplitude and plasma density increase and the 
electron temperature decreases. Hence, the development of 
parametric instability leads to the excitation of two 
oppositely propagating SWs with the same frequency and 
amplitude. The superposition of these waves produces a 
standing SW. 

 
4. RESONANT INTERACTION 

Now let us consider the resonance interaction when 
pump field is an electric field of Langmuir wave. In this 
case the system (5) should be expanded with one dynamical 
equation for the amplitude of Langmuir wave: 

2100 / AAitA α−=∂∂ ,                        (12) 
where  is the resonant interaction constant. In many 
cases the amplitude  can be assumed as constant. This 
imposes the following restriction to energy of SWs: 
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where  is the SW penetration depth into the plasma,  is 
the characteristic length of the system. For the semi-
bounded plasma: . Thus, even in the case of 
comparable amplitudes  with the amplitude of pump 
field,  can be considered as constant. In this case the 
resonant interaction is also described by (9). 
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5. CONCLUSIONS 

The analysis carried out has shown that, in both cases of 
resonant and non-resonant interaction at a fixed amplitude 
of the pump field, a strengthening of the external magnetic 
field, as well as a reduction in the plasma density, leads to 
an increase in the threshold pump field amplitude and to a 

decrease in both the linear growth rate and the saturation 
amplitude of the excited SWs.  

An increase in the plasma electron temperature also 
leads to an increase in the threshold pump field amplitude 
and a decrease in the linear growth rate. 

Thus, the parametric excitation of the SWs under study 
is found to be most efficient for waveguide structures with a 
sufficiently dense plasma in weak magnetic fields.  
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ПАРАМЕТРИЧЕСКОЕ ВОЗБУЖДЕНИЕ ПОВЕРХНОСТНЫХ ВОЛН В ПЛАЗМЕННО-
МЕТАЛЛИЧЕСКИХ СТРУКТУРАХ С ПЕРПЕНДИКУЛЯРНЫМ МАГНИТНЫМ ПОЛЕМ 

 
Ю.А. Акимов, Н.А. Азаренков, В.П. Олефир 

В работе рассмотрено параметрическое возбуждение потенциальных поверхностных волн, распространяющихся 
в планарной волноводной структуре “плазма-металл” с перпендикулярным к границе магнитным полем. В качестве 
источника параметрического возбуждения используется внешнее однородное в пространстве и переменное во 
времени электрическое поле на второй гармонике возбуждаемых волн. Рассмотрены случаи, когда поле накачки 
является как собственным, так и несобственным возмущением системы.  

 
ПАРАМЕТРИЧНЕ ЗБУДЖЕННЯ ПОВЕРХНЕВИХ ХВИЛЬ У  

ПЛАЗМОВО-МЕТАЛЕВИХ СТРУКТУРАХ ІЗ ПЕРПЕНДИКУЛЯРНИМ МАГНІТНИМ ПОЛЕМ 
 

Ю.О. Акімов, М.О. Азаренков, В.П. Олефір 
В роботі розглянуто параметричне збудження потенціальних поверхневих хвиль, що розповсюджуються у 

планарній хвилеводній структурі “плазма-метал” з перпендикулярним до межі магнітним полем. Як джерело 
параметричного збудження використовується зовнішнє однорідне у просторі та змінне у часі електричне поле на 
другій гармоніці хвиль, що збуджуються. Розглянуто випадки, коли поле накачки є як власним, так і невласним 
збудженням системи.  
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