TWO-DIMENSIONAL SIMULATION OF DUST CLOUDS IN A PLASMA

Taras Shevchenko Kiev University, Kiev, Ukraine

In this article has been carried numerical simulations of the interaction of the partially ionized argon plasma and a dust cloud, which is situated near the wall in a cylindrical vessel. The plasma and dust dynamics studied in the frame of two-dimensional hydrodynamics model, the charge of dust particles is determined according to the orbit-limited probe model, the potential of the self-consistent electric field is described by Poisson equation. As a result simulations the spatial distributions of dust cloud parameters are obtained at different times.

PACS: 52.27.Lw

1. INTRODUCTION

The physics of dusty plasmas has been extensively studied in the last decade in view of practical applications in space, as well as laboratory situations. Particular attention has been paid to the study of collective processes, such as the formation of nonlinear structures like solitons, double layers, voids, vortexes and dust clouds with sharp boundary. These phenomena are observed in many capacitively coupled rf devices [1], dc glow discharged devices [2] and recently have been discovered in microgravity experiments [3]. A characteristic feature of bounded dusty plasmas with free boundaries is the expansion process. The one-dimensional expansion of an unmagnetized dusty plasma was examined by [4], [5]. It is necessary note that experimental results shown that dust clouds are not one-dimensional [3] and this feature may causes new phenomena.

In this article we investigate the temporal behavior of dust clouds in plasma near a solid wall using two-dimensional hydrodynamic model and a computer simulation.

2. MODEL

We consider partially ionized argon plasma in a cylindrical vessel (fig.1). The cloud of dust particles immersed into the plasma near the solid wall. The form of the dust cloud at initial time is a disk. In our model dust grains acquire a charge and influence the potential of the electric field \(\Phi \), which is described by Poisson equation:

\[
\Delta \Phi = -\frac{1}{\varepsilon_0} \left(en_i - en_e + q_d n_d \right).
\]

The wall potential \(\Phi_0 \) at the bottom of the vessel (Fig.1) is floating. The other walls of the vessel are grounded (\(\Phi = 0 \)).

Electrons are assumed to be in a thermal equilibrium; therefore their density satisfies the Boltzmann distribution

\[
n_e = n_{e0} \exp \left(\frac{e j}{kT_e} \right),
\]

where \(n_{e0} \) is the electron density far away from the charged wall.

Ions and dust particles are treated as a cold fluid, governed by the continuity and the momentum conservation equations

\[
\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i w_i) = -Y_i n_d,
\]

\[
\frac{\partial n_d}{\partial t} + \nabla \cdot (n_d w_d) = -Y_d n_i,
\]

\[
m_i w_i \frac{\partial \Phi}{\partial t} + \vec{w}_i \vec{C} \Phi \frac{\partial \Phi}{\partial t} = -en_i \Phi \vec{F}_d + \vec{F}_i,
\]

\[
m_d w_d \frac{\partial \Phi}{\partial t} + \vec{w}_d \vec{C} \Phi \frac{\partial \Phi}{\partial t} = -q_d n_d \Phi \vec{F}_d - \vec{F}_i + \vec{F}_n.
\]

The dust charge \(q_d \) is determined by the charging currents

\[
\frac{\partial q_d}{\partial t} + \vec{w}_d \vec{C} q_d = (I_i - I_e).
\]

Here \(n_i, n_d \) are ion and dust densities, \(\vec{w}_i, \vec{w}_d \) are drift velocities of ion and dust fluids. According to the orbit-limited probe model, the electron and ion charging currents \(I_e, I_i \) are determined by local electron and ion densities, as well as the potential difference between the grain surface and the local plasma. They are given by

\[
I_e = -\pi r_e^2 e \sqrt{\frac{8kT_e}{\pi m_e}} n_e K_e(q_d),
\]

\[
I_i = \pi r_i^2 e \sqrt{\frac{8kT_i}{\pi m_i}} n_i \left(1 - \frac{eq_d}{r_d kT_i} \right).
\]
where \(K_\varepsilon(q_d) = \exp\left(-\frac{3e^2q_d\mu}{W d k T_e}\right) \) when \(q_d < 0 \) and
\[
K_\varepsilon(q_d) = 1 + \frac{e q_d}{r_d T_e} \text{ when } q_d > 0.
\]

We assume that the forces on the dust consist of electrostatic force, ion drag forces, and neutral collision force. The ion-drag force \(\vec{F}_{id} \) consists of the collection \(\vec{F}_{id}^c \) and orbit \(\vec{F}_{id}^o \) components. The collection force is a result of the momentum transfer from the ions collected by the particle, so that
\[
\vec{F}_{id}^c = n_i m_i \vec{w}_i |\vec{w}_i| 4\pi b_{\pi/2}^2 \Gamma,
\]
where \(b_{\pi/2} = e q_d / m_i w_i^2 \) is the orbital impact parameter and \(\Gamma = \ln[(\lambda_d^2 + b_{\pi/2}^2)/(b_{\pi/2}^2 + b_{\pi/2}^2)]^{1/2} \) is the Coulomb logarithm integrated over the interval from collection impact parameter to Debye radius \(\lambda_d \). The neutral gas collision force \(\vec{F}_{n} \) is given by:
\[
\vec{F}_{n} = \frac{16\sqrt{\pi}}{3} \kappa \frac{\pi w^2 n T_n}{\mu w_{th}} \vec{w}_n,
\]
where \(\vec{w}_n \) is neutral gas velocity, \(w_{th} \) is neutral gas mean thermal velocity, \(n, T_n \), and \(m_n \) are the neutral gas density, temperature, and mass, respectively.

The modified method of big particles [6] is used for the computer modeling of this problem. In this method the complex set of equations is separated on simpler components which describes separated physical processes. The general solution consists of additive members of time influences of each process on spatial parameter distributions. Each process is simulated with the corresponded minimum characteristic time what allows to obtain higher simulation precision.

3. RESULTS

We simulated the evolution of the two-dimensional dust cloud using the large particles method [5]. Calculations were carried out for following plasma parameters: \(n_n = n_i = 10^{12} \text{cm}^{-3} \), \(T_e = 1 \text{eV} \), \(r_d = 0.1 \mu m \), \(n_d = 10^8 \text{cm}^{-3} \), \(n_s = 10^{16} \text{cm}^{-3} \). The length and the radius of the vessel are \(L = 10 cm \) and \(R_0 = 2.5 cm \) corresponding.

Figure 2a shows the spatial distribution of dust density at \(t=300 \) after the beginning of the dust cloud expansion. The dust density is normalized on the ion density in the unperturbed plasma; the spatial coordinate is normalized on Debye radius.

We can see that the density of dust particles is not uniform along radius. Its maximum is at axis of symmetry \((r = 0) \). Expansion of dust cloud is carried out radially. The dust cloud doesn’t expand along axial axis in consequence of the balance of electrical and viscosity forces. It is confirmed by fig.2b, where distributions of dust density along axial axis are shown. These distributions are invariable during the long time interval.

![Fig. 2. The spatial distributions of dust density (a) and electrical potential (b) at tωp=300](image-url)
layers are formed. These double layers cause the capture of dust particles in some region near the wall.

REFERENCES