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New method of positron annihilation lifetime spectra processing is proposed. It is based on digital spectral analy-
sis, namely, on Prony method. The regularization procedure to solve the inverse problem of finding parameters of 
useful signals present in the data is formulated. A new approach to determine the number of components in a spec-
trum is proposed. Results on simulated spectra demonstrate the high-resolution capability of the method.
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1. INTRODUCTION
Positron  lifetime  spectroscopy  is  one  of  the  best 

methods for detecting open-volume defects of atomic di-
mensions. Positrons implanted into the solid rapidly lose 
energy via a variety of inelastic processes. The thermal-
ized positrons diffuse in the lattice and finally will be 
annihilated by an electron. The rest energy of electron-
positron pair is converted into energy as two annihila-
tion γ-quanta with energy 0.511 MeV. Detection of any 
of these γ-quanta is the signal of positron death. The sig-
nal of positron birth depends on the source used but in 
any case the time difference between these two signals 
determines the positron lifetime for a single event. The 
lifetime is a random quantity and thus must be described 
by its probability distribution function.

Many open-volume defects in metals and semicon-
ductors are negatively charged and hence form a local 
attractive potential for positron. Therefore,  in the pro-
cess of a random walk a positron can be trapped at these 
defects in a localized bound state. The annihilation rate 
is determined by the overlapping of positron and elec-
tron densities. Negatively charged or neutral open-vol-
ume defects have at the same time locally reduced elec-
tron  density.  That  is  why the  lifetime of  the  positron 
trapped at these defects increases.

In other words, we expect that for open-volume de-
fects  of  k different  types  the  probability  distribution 
function s(t) of the positron lifetime t is a weighted sum 
of (k + 1) components. It was shown [1] that under quite 
general assumptions this function has a form
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The aim of the spectrum analysis is the extraction from 
the experimental signal the set of parameters {τj, Ij} for 
j = 1,…, k + 1.  This analysis allows us to separate out 
various atomic defect  configurations and their relative 

abundance.
The experimental spectrum differs from the function 

s(t) in several aspects.
1) Function s(t) is the input signal for detecting sys-

tem. To obtain the output signal we have to con-
volve s(t) with impulse response characteristic of 
the system.

2)  Output signal is formed with the help of a multi-
channel analyzer (MCA), that is, the continuous 
nature of the signal s(t) is discretized. This trans-
formation has several consequences.

It is a common experience that only one to four com-
ponents can be resolved, whereas the number of chan-
nels is  of  order  of  100.  It  means that  the problem of 
spectrum analysis is overdetermined and its solution is 
usually defined in a least square sense.

Events detected in any particular channel form the 
flow of random events, in the simplest case the Poisson 
flow. Therefore the spectrum as a whole can be subdi-
vided into useful signal and Poisson noise.

Discretization of a continuous signal by a multichan-
nel analyzer is equivalent (see below) to the procedure 
of  taking sampling values  of  this  signal  at  some grid 
points. This grid depends on the signal under study and 
its properties should be taken into account in spectrum 
processing.

Various  approaches  have  been  used  to  analyze 
positron lifetime spectra but up to now the most com-
monly used are approaches based on the Gauss-Newton 
non-linear least square fitting [2]. We propose a new ap-
proach to the problem and within this approach we stud-
ied two problems.

The first concerns the determination of the number 
of  components.  The  conventional  solution  is  to  start 
with one-component fit and add components as long as 
the variance of the fit decreases. The weakness of this 
solution is well known in spectral analysis [3]: the vari-
ance of the fit usually does not reach a minimum value 
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but rather monotonically decreases as the order  of the 
model is increased. Another approach based on optimal 
linear filtering and the method of maximum entropy was 
proposed in [4] but its resolution capability is not high 
enough and this leads to certain difficulties in treating a 
spectrum with relatively close components. 

Another  traditional  problem concerns  the  ill-posed 
nature  of  the  inverse  problem  [5]  under  study.  This 
means that the problem is inherently unstable.

2. SAMPLING 
Let the spectrum reside on a multichannel analyzer 

with a time increment ∆ per channel. In the experiment 
the  number of  counts  versus  channel  number  is  mea-
sured. Therefore we can calculate the total numbers of 
counts  and  then  for  any  particular  channel  [a, b]  the 
probability  P of the positron lifetime to fall inside this 
channel. For the simplest case of a one-component spec-
trum this probability is equal to the exponential proba-
bility distribution function

( ) ts t Aeα=            (2)
integrated over t from a to b,
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According to the mean value theorem
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where c ∈ [a, b]. From equations (3), (4) we obtain
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is the same for all channels. It means that the procedure 
which measures the probability P for the probability dis-
tribution function  s(t) (2) gives sampled values of this 
function on an equidistant  grid  with the same step  ∆. 
Note that the exact position of the grid on the time axis 
depends on the coefficient α which is usually not known 
in advance.

Therefore, for the positron lifetime spectrum of the 
form (1) this procedure will determine the sampled val-
ues for different components on different grids. Let us 
suppose that in the model sampled values for the signal 
s(t) (1) as a whole are defined on the equidistant grid 
with step ∆ which for simplicity is taken as

0, ,..., ( 1)N∆ − ∆ ,              (7)
where N is the number of channels in the spectrum.

It can be easily shown that for a one component sig-
nal s(t) (2) two estimators 1 2ˆ ˆ,α α  of the damping coeffi-
cient  α will be the same for two grids: (7) and 0 + δ,  
∆ + δ, …, (N – 1) ∆ + δ accordingly.  But  the  estimator 

2Â  for the amplitude A we have to increase by a factor 
e-αδ (α < 0) in order to consider formally the estimators 

1 2ˆ ˆα α= ,             (8)

2
2

ˆ 2
1 2 2 ˆ

ˆˆ ˆ ˆ
1

A A e A
e

α δ
α
α−

∆
∆ж ц= = з ч−и ш

,            (9)

as obtained for the sampled values of the function  s(t) 
(2) taken at the grid points (7). Similar transformations 
can be applied to all components in the positron lifetime 
spectrum (1).

3. COMPUTATIONAL PROCEDURE
Experimental positron lifetime spectrum in any chan-

nel contains not only the useful signal but also a noise. 
Therefore let us suppose that the spectrum is defined by 
the set of sampled values  x[1], x[2], …, x[N], taken on 
the grid (7) and try to estimate this spectrum with a gen-
eral p-member model of complex exponentials
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Hereafter, in keeping with the tradition of the signal pro-
cessing  literature,  we  use  brackets  around  a  discrete 
variable.

In Eq. (10) i is the imaginary unit, 1 ≤ n ≤ N, Aj, αj, fj 

and  θj are  amplitude,  damping  coefficient,  frequency 
and phase constant accordingly for  j-th complex expo-
nential. Note that we do not impose any restrictions on 
the order of model p and values of all these parameters. 
As a consequence sum (10) may present both pure de-
creasing  exponentials  with  zero  frequencies  and  un-
damped sines with zero damping coefficients. Terms of 
the first type are the same as the components of the use-
ful signal (1) whereas the latter describe the noise part 
of the spectrum.

In shorthand notation we can write down the func-
tion of discrete time (10) as
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For N sampled values we have to minimize the sum
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simultaneously over parameters hj, zj and the number of 
terms p. It is well known that this is an extremely com-
plicated nonlinear problem even for the case where the 
order p of the exponential model is known in advance.

The traditional way to resolve this problem implies 
the  application  of  iterative  algorithms of  multidimen-
sional  minimization.  This  approach  has  the  following 
shortcomings.  These  algorithms  are  tedious,  the  ob-
tained solution is very sensitive to the choice of starting 
values of the independent variables and the solution may 
converge to a local but not to the global extremum in 
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multidimensional  space.  However  these  methods  as  a 
rule are very flexible and can be applied to any non-lin-
ear approximation of sampled values and not necessarily 
to the exponential one. On the other hand for the latter 
approximation there is a group of specially developed 
methods usually defined as the Prony method [6]. The 
Prony method is not iterative and reduces the non-linear 
aspects of the problem to finding roots of polynomials. 

The key point of the Prony method is to consider ex-
pression  (11)  as  a  general  solution  of  some  (yet  un-
known) linear difference equation
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with constant coefficients  a[m] such that  a[0] = 1. Ac-
cording  to  the  general  theory  of  these  equations  the 
complex constants zj in Eq. (11) are the roots of charac-
teristic equation
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Thus, the first stage of computational procedure is to de-
termine the coefficients a[m]. There are two distinct cas-
es here. If the number of sampled values x[1], …, x[2p] 
is equal to the number of unknown exponential parame-
ters h1, …, hp, z1, …, zp we have a well determined prob-
lem and are able exactly to determine them from the set 
of linear equations (16) writing down for p +1 ≤ n ≤ 2p.

In  the  overdetermined  case  where  N > 2 Eq. (16) 
should be rewritten in the form
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where  e[n] is the error of the forward prediction if the 
coefficients a[m] are treated as forward prediction coef-
ficients. In this case we have to minimize the sum of the 
squared errors e[n] over all coefficients a[m] so that the 
latter can be derived as a solution of covariance equa-
tions of forward prediction.

In the  second stage  obtained  coefficients  a[m]  are 
used to form a polynomial (17). Roots of this polynomi-
al give the following estimators of damping coefficient 
αj and frequency fj for j the exponential
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If the complex constants  zj are known then Eq. (11) 
becomes linear with respect to the complex exponential 
parameters hj. Minimization of sum of the squared errors 
of the exponential approximation (11) over these param-
eters leads to a standard normal equation of least square 
method

( ) ,H H=Z Z h Z x            (20)
where superscript "H" denotes Hermitian conjugation,
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The solution of the set of linear equations (20)  is the 
third stage of the computation procedure. Obtained com-

plex parameters are then used for estimations of ampli-
tude  Aj and phase constant  θj of  j the exponential (see 
Eq. (12)) 
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4. ALGORITHMS
At  the  first  stage  of  computational  procedure  we 

have to solve the covariance equations for linear predic-
tion. For this purpose we used the fast algorithm initially 
proposed in [7] and modified later in [8]. This algorithm 
resembles the Levinson algorithm for Toeplitz matrices 
but is much more complicated because a Hermitian ma-
trix  of  covariance  normal  equations  is  not  a  pure 
Toeplitz matrix but can only be represented as a product 
of matrices of this type. This algorithm like the Levin-
son one has recursive structure and therefore for a given 
order p allows us to obtain the whole set of least square 
solutions for all orders less than or equal to p.  More-
over, the algorithm gives not only the solution of covari-
ance equations for forward prediction but at the same 
time the similar solution for backward prediction.

At  the  second  stage  we  used  the  Jenkins-Traub 
method [9] for finding the roots of a polynomial. This 
method finds roots (one per time), roughly speaking in 
ascending order  of  their  modulus,  then deflates found 
complex root and decreases the order of polynomial.

At the third stage we have to solve the set of normal 
equations  of  the  linear  least  square  method.  Even for 
real  coefficients  of  linear  prediction  the  roots  of  the 
characteristic Eq. (17) in the general case will be com-
plex and hence we have to solve the set of normal equa-
tions with a Hermitian matrix. We used for this purpose 
the standard algorithm of Cholesky decomposition [10].

5. RESULTS
To  test  the  performance  of  the  program  Q_fit  we 

used several series of simulated spectra. This approach 
is similar to the one proposed in [4]. Moreover, in order 
to  compare  the  results  of  processing  of  the  spectrum 
with different programs we used the same set of input 
parameters as in [4].

For a given set of lifetime values and relative intensi-
ties a number of different spectra were simulated which 
formed the series. Each spectrum in the series consists 
of a given number of counts. For each count we first se-
lected a state in (1) and then for this state generated one 
deviate  with  an  exponential  distribution  function.  In 
both  cases  the  inverse  function  method  was  used  to 
transform the random deviate with a uniform probability 
distribution.

Each spectrum has been convoluted with a spectrom-
eter resolution function which as in [4] was taken in the 
form of the single Gaussian with FWHM = 270 ps. For 
convolution we used a fast Fourier transform algorithm 
after prior setting up of buffer zone of zero-padded val-
ues at the end of a spectrum and bounding the Fourier 
transform of
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spectrometer  resolution  function.  Similar  algorithms 
were used for  the inverse operation of  deconvolution. 
(The details can be found in [11]).

Series A. 2 components: 150 ps 50%, 250 ps 50%; 
number of channels 128; time calibration 33 ps/channel; 
counts per spectrum 2×106; number of spectra 5.

Let  us  use  this  simplest  two-component  spectrum 
with well separated and equally intensive components to 
illustrate  the  procedure  of  determining the  number of 
states in (1). First of all we applied the program Q_fit to 
the pure noise-free spectrum when the sampled values 
were obtained by exact integration of the useful signal 
(1) over the channels of MCA. For a successively in-
creasing order of exponential model (10) we obtained:

1) p = 1: pure decreasing real exponential (that 
is both frequency and phase constant are zero within 
the  computational  accuracy)  and  average  lifetime 
τ ≈ 195 ps.     
2) p = 2:   the single exponential splits into two 
pure  de-creasing real  exponentials  whose parame-
ters are exactly equal to the input ones (τ1 = 150 ps, 
I1 = 0.5; τ2 = 250 ps, I2 = 0.5).
3) p = 3, 4, 5: all terms of the exponential mod-
el  can  be  subdivided  into  two  groups.  The  first 
group  is  comprised  of  two  real  exponentials,  the 
same as in 2).  The second group includes the re-
maining exponentials of the model and all of them 
within the computational accuracy have zero inten-
sity.
4) p = 6:  interruption in the subroutine for the 
fast  solution of  the covariance equations of linear 
prediction because in the iterative process the vari-
ance of forward prediction became negative.

Fig. 1.  Application  of  the  program  Q_fit  to  the  
noise-free spectrum of  series A: (a) mean lifetime t of  
pure  decreasing  real  exponentials  with  nonvanishing  
energy vs.  order  p  of  model;  (b) variance  of  forward 
(solid line) and backward (dotted line) prediction

In Fig. 1,a mean lifetime values of real exponentials 
versus the order of exponential model are shown. From 
this figure it is clear that the spectrum has two compo-
nents. The same conclusion can be drawn from the vari-

ance of linear prediction versus the order of exponential 
model dependency (Fig. 1,b). Indeed, for the value p = 2 
divides into two regions with sharply different diminish-
ing rate of variance of both the forward and backward 
prediction.  That  is  although  for  p = 2  the  variance, 
strictly speaking, does not reach a minimum we never-
theless are able to figure out when further addition of 
exponential terms does not lead to any practically suffi-
cient improvement of the approximation.

Unfortunately, for simulated spectra the situation is 
quite different. In this case the number of counts on each 
grid point is subjected to the statistical fluctuation, and 
the spectrum as a whole consists of the useful signal and 
a noise. It can be seen from Fig. 2 that for such a spec-
trum the variance of both forward and backward predic-
tion monotonically decrease as the order of the exponen-
tial model increases. Thus, we have to use a different ap-
proach to determine the number of states in a positron 
lifetime spectrum.

Fig. 2.  Variance of linear prediction for one particular  
data set from series A

Fig. 1,a contains a hint of this approach. As was not-
ed, processing of positron lifetime spectrum belongs to 
ill-posed inverse problem. As a rule for any particular 
inverse problem we can define two positive functionals 
FA and FB. The first of them measures the agreement of a 
model to the data while the second one measures some-
thing  like  the  "smoothness"  of  the  desired  solution. 
When FA by itself is minimized the agreement becomes 
very good, but the solution becomes unstable. In another 
extreme case, minimizing FB by itself gives smooth solu-
tion that has nothing at all to do with the measured data. 
So, the central idea in inverse theory is to minimize the 
weighted sum of these two functionals.

It can be seen from Fig. 2 that increasing of expo-
nential  model  order  leads  to  the  improvement  of  the 
agreement between the solution and the underlying spec-
trum, that is the solution becomes closer and closer to 
the  nonsmooth  initial  signal.  But  the  solution  sought 
must  look  like  the  useful  signal  (1).  So  we  have  to 
smooth the derived solution. One way to do this is to 
maintain in it only a few most energetic pure decreasing 
exponentials.

The energy of a discrete sequence x[i] (i = 1, …, N) 
from a standpoint of signal processing is defined as
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Therefore let us subdivide terms of exponential ap-
proximation  into  two groups.  The  first  group  will  be 
comprised by pure decreasing real exponentials, that is, 
by terms j satisfying following conditions

0jα < , jf ε< , ,jθ ε<           (24)
where  ε is the machine-dependent precision parameter 
which  in  our  calculation  was  taken  as  10-5.  Another 
group  will  contain  the  remaining  exponentials  of  the 
model,  that  is,  terms for  which any of  the  conditions 
(24) has broken down.

In Fig. 3,a for a particular data set from series A the 
mean lifetime t for all exponentials from the first group 
versus order  of  the exponential  model  is  shown. It  is 
seen from this  figure  that  the  first  group  is  relatively 
small. For the order of exponential model from 1 to 63 
the size of this group falls in the range 1 (p = 1) to 6 
(p = 56). 

Fig. 3.  Application  of  program Q_fit  to  the  same 
data set from series A as in Fig. 2: (a) mean lifetime of  
pure decreasing real terms of the exponential approxi-
mation  (10) whose  energy  is  ≥ 0.005 Es (large  cross)  
< 0.005 Es (small cross), where Es is the energy of the  
spectrum; (b) mean lifetime of pure decreasing real ex-
ponentials  with  nonvanishing  energy.  These  exponen-
tials form a regularized solution

Let us restrict our consideration to the spectra, which 
do not contain very weak components. In this case we 
can proceed further with a classification of exponential 
terms in approximation (10). For any spectrum we can 
calculate its energy Es and then leave in the first group 
only those exponentials whose energy exceed some pre-
scribed fraction (say, 0.005) of Es (Fig. 3,b).

Thus far we have classified only individual terms of 
the exponential  model.  But there is  also  a  restriction, 
which should be imposed on the first group of exponen-
tials as a whole. Indeed, these exponentials will form the 
useful  signal  (1)  and  as  any  probability  distribution 
function this signal should be normalized. Therefore we 
can impose on each useful component the set of follow-
ing conditions (master conditions):
1) it is real and pure decreasing (Eq. (24));
2) its energy is not vanishingly small as compared with 

the energy of the spectrum;

3) for given order p these components as a whole form 
a normalized probability distribution function.
Let us define the optimal range of the exponential 

model as a range of p where the number of its terms sat-
isfying master conditions and their mean values are vir-
tually constant. It can be seen from Fig. 3,b that for se-
ries A the optimal range is defined by the following in-
equality 10 ≤ p ≤ 63. Thus, we get the conclusion that a 
particular spectrum from this series consists of two com-
ponents and these two components form the smoothed 
desired solution.

What we have just described can be viewed as a way 
to determine the number of states in a positron lifetime 
spectrum and at the same time as a regularization proce-
dure applied to the inverse problem under study.

It is worthwhile to illustrate the resolution capability 
of  the  computational  procedure.  The  energy  spectral 
density of the exponential  approximation (11) may be 
defined by numerous means depending on the adopted 
assumptions concerning the behavior of this approxima-
tion beyond the sampled range. It is generally believed 
that following two-side function
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provides the best  spectral  estimations over  other  such 
functions. The  z-transformation of the function (25) is 
given by
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Hence, according to the general recipe, we can calculate 
the energy spectral density of the exponential approxi-
mation
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where  f is the real frequency from the range – fc< f< fc 

and fс = 1/(2∆) is the Nyquist critical frequency.
For the same data set as in Fig. 3 and for the highest 

possible  order  of  exponential  approximation  (p = 63) 
the  energy  spectral  density  of  this  approximation  is 
shown in Fig. 4. For comparison in this figure the ener-
gy spectral density of a regularized (smooth) solution is 
also shown. It can be seen that regularization procedure 
is equivalent to the extraction of noise from the expo-
nential approximation.

The spectral density in Fig. 4 illustrates the resolu-
tion capability of the computational procedure taken in 
the ordinary sense, i.e. as a capability to distinguish two 
sine waves with close frequencies. But we are interested 
in a different definition of this term as the capability of 
the computational procedure to distinguish two pure de-
ceasing  exponentials  with  close  damping  coefficients. 
So let us formally treat frequency  f as a complex vari-
able  f = f + iα and consider the energy spectral density 
(27) as the section of the right-hand side complex func-
tion along the real axis in the complex frequency plane. 



Fig. 4.   Energy spectral density of the exponential  
approximation of data set from series A (solid line) and 
of the regularized solution (dotted line) 

A similar  section of  this  function along imaginary 
axis is shown in Fig. 5,a for the same order of the expo-
nential model (p = 63)  as in Fig. 4.  For simplicity in-
stead of the damping coefficient α we chose in Fig. 5 the 
mean lifetime τ (τ = –1/α) as an equivalent independent 
variable. Formally the function in Fig. 5,a represents the 
result  of  an  analytic  continuation  of  the  function  in 
Fig. 4  from the  real  axis  into  the  complex  frequency 
plane.

Fig. 5,a clearly demonstrates the high-resolution ca-
pability of  the  computational  procedure  to  distinguish 
pure decreasing exponentials. (Note that y-axis in Fig. 5, 
has a logarithmic scale). From our point of view the high 
resolution power of the computational procedure may be 
ascribed to the covariance method of linear prediction 
and to the special character of the basic set used for the 
exponential approximation. The covariance method does 
not  use  a  windowing  operation  and  it  is  commonly 
adopted that the absence of this operation leads to the 
increasing resolution power in any spectral method.

It  can be  seen from the Fig. 3,b  that  in  the  range 
3 ≤ p ≤ 7 estimations of the average value of two pure 
decreasing exponentials are biased and the bias mono-
tonically decreases as the p is increased. That is why we 
have to use an exponential model with a relatively high 
order. But in many spectral methods the higher is the or-
der of the model the higher is the probability of splitting 
of the spectral line [3]. This is also true for the proposed 
computational procedure as can be seen from Fig. 5,b. 
In Fig5,b the same function as in Fig. 5,a is shown but 
calculated for a different order of the exponential model. 
For p = 60 the first group initially contains four pure de-
creasing exponentials (Fig. 3,a).  One of them with the 
shortest lifetime has a very low intensity and hence can 
be eliminated. The three remaining exponentials satisfy 
the master conditions but this result takes place for a sin-
gle value of p in the range 10 ≤ p ≤ 63 and hence can be 
taken as accidental. That is why we have to consider the 
whole range of the exponential model order and make a 
statistically plausible conclusion, that is, conclusion that 
takes  place  for  most  values  of  p from this  range.  It 
should be noted that the fast algorithm for the solution 
of covariance equations of linear prediction applied for 
highest possible order p at 

Fig. 5.  Resolution capability  of  the Q_fit  program 
for two values of the model order and the same data set  
from series A as in Fig. 3

the same time gives solutions for all orders less than or 
equal to p without any additional computation. So con-
sideration of the whole range of  p does not lead to any 
significant increasing in the time for spectrum processing.

Processing of the series of spectra is naturally subdi-
vided into two successive steps. First, for one particular 
spectrum from the series the above-described procedure 
is  applied.  Results  are  the  number  of  states  in  the 
positron lifetime spectrum and the optimal range of the 
exponential model order. At the second step these data 
serve as input parameters for the computational proce-
dure. The program for a given value of p from the opti-
mal range determines the parameters for all terms in the 
exponential approximation (10),  it sorts them into two 
groups and checks up the first group against the master 
conditions.  If  both master conditions are satisfied and 
the number of states in the regularized solution is equal 
to the one determined at the first step then this solution 
is accepted. Otherwise the next value of p from the opti-
mal range is selected.

In Table 1 are listed the results for series A obtained 
by MELT [4], Posfit [4] and Q_fit. In this table we give 
the mean values of lifetimes and intensities as well as 
the standard deviations. Both MELT and Posfit give reli-
able but slightly biased estimates. Q_fit gives very good 
unbiased  results  with low errors.  From our  viewpoint 
this distinction in estimates may be due to the different 
procedures of noise treatment adopted in these methods.

Table 1.  Mean values for lifetimes τi and weights Ii 

(i = 1, 2) found by MELT, Posfit [4] and Q_fit for simu-
lated spectra from the series A. The errors represent the  
standard deviations from the mean values

Analysis 
method

t1(dt1), ps
I1 (dI1), %

t2(dt2), ps
I2 (dI2), %

Simulation 150
50

250
50

MELT [4] 148.2  (4.0)
46.7  (3.3)

242.4  (4.0)
53.3  (3.3)

Posfi [4] 144.3  (5.6)
45.2  (3.6)

244.8  (3.3)
54.8  (3.6)

Q_fit 149.5  (3.1)
50.2  (1.8)

250.4  (1.6)
50.0  (2.0)



Table 2.  Mean values for lifetimes τi and weights Ii (I = 1,…, 4) found by MELT, Posgauss [4] and Q_fit for 
simulated spectra from the series D. The errors represent the standard deviations from the mean values

Analysis method t1(dt1), ps
I1(dI1), %

t2(dt2), ps
I2(dI2), %

t3(dt3), ps
I3(dI3), %

t4(dt4), ps
I4(dI4), %

Simulation 100
25

250
25

600
25

1000
25

MELT [4] 103.1  (0.6)
25.27  (0.35)

254.9  (4.3)
23.94  (0.36)

559.3  (14.1)
20.92  (0.80)

947.8  (6.4)
29.87  (0.94)

Posgauss [4] 100.6  (0.7)
25.31  (0.40)

254.9  (4.8)
25.34  (0.27)

618.4(13.7)
25.89  (0.57)

1012.1  (8.1)
23.47  (1.02)

Q_fit 100.2  (1.7)
24.81  (1.32)

245.9  (14.2)
24.59  (0.78)

592.0  (28.0)
25.34  (0.93)

998.9  (12.9)
25.24  (1.78)

Fig. 6.  Mean  lifetime  of  the  exponential  model  
terms satisfying the master conditions for one particu-
lar data set from series D

The next two series illustrate the ability of the differ-
ent methods to resolve components with close mean life-
times.

Series B. 2 components: 150 ps 50%, 220 ps 50%; 
number of channels 128; time calibration 33 ps/channel; 
counts per spectrum 2×106; number of spectra 5. In this 
series the two components are closer than in  series A. 
All methods are able to resolve the two components and 
give estimations with the same qualitative characteristics 
as in series A. The main difference consists in sufficient 
increasing of errors for all methods.

Series C.  2 components: 150 ps 50%, 190 ps 50%; 
number of channels 128; time calibration 33 ps/channel; 
counts per spectrum 2 × 106; number of spectra 5. "Here 
MELT, unable to resolve the two components at the op-
timal entropy weight, showed a wide peak with a mean 
lifetime of ≈ 169 ps" [4].  Posfit also runs into problems 
for this series. "The result obtained for the two compo-
nent  fits  are  not  stable:  In  the first  spectrum the two 
components are reproduced quite well, in two others the 
result is approximate, while in the remaining two a spu-
rious short  or  long component appears"  [4].  Q_fit are 
still able to resolve the two components and gives unbi-
ased estimators but the errors have further increased up 
to  the  ± 10 % level  on the  mean lifetimes and to  the 
± 20 % level on the intensities found.

Series D.  4 components: 100 ps 25%, 250 ps 25%, 
600 ps  25%,  1000 ps  25%;  number  of  channels  128; 
time calibration 58 ps/channel; counts per spectrum 2×
106;  number  of  spectra  10.  This  is  an  artificial  and 

Fig. 7.   Resolution capability of the Q_fit program for 
the same data set from series D as in Fig. 6

complicated data set used mainly to test the performance 
of the programs. The results found by different methods 
are summarized in Table 2. All methods resolve
four components in spectra but the MELT results show a 
correlation between two longest components [4]. In this 
respect both Posgauss ("modified version of Posfit" [4]) 
and  Q_fit performs better. As a whole  Q_fit gives esti-
mators with the smallest bias but with significantly larg-
er errors. The scatter in the results of Q_fit may be due 
to the high resolution capability of this method.

In Fig. 6 for a particular data set from  series D the 
mean lifetime for all exponentials satisfying the master 
conditions is shown. The tree structure in Fig. 6 is simi-
lar  to  the  one  for  noise-free  case  but  is  stretched-out 
over approximately a ten times longer range of the p-ax-
is. The whole range of the exponential model order in 
Fig. 6 can be subdivided into three intervals: 

1) 8 ≤ p ≤  15;   2) 32 ≤ p ≤ 35;   3) 42 ≤ p ≤ 57,
where the parameters of pure decreasing energetic expo-
nentials remain virtually constant separated by transition 
ranges. The first of them corresponds to a three compo-
nent model, the second to the four components with bi-
ased  estimations and  the  third  to  the  four  component 
model with unbiased estimations. So, the more exactly 
the noise in the spectrum is described the more reliable 
is the spectrum decomposition.

The optimal  range of  the exponential  model  order 
for the series D is much shorter than for series A and ex-
tends from 42 to 57. Fig. 7 illustrates the resolution ca-
pability of the computational procedure for one particu-
lar order of exponential model from the optimal range. It 
can be seen from this figure that the useful signal con-
sists  of  four  components,  which  are  determined  with 
high-resolution capability.



 CONCLUSION
A  new  approach  to  analyze  the  positron  lifetime 

spectra was proposed. This approach is based on a non-
linear least square method but differs from the existing 
ones in that it uses fast algorithms and a more flexible 
basic set.  This allows to use a model function with a 
large number of components and thus to describe readily 
and with reasonable accuracy both useful and noise parts 
of the spectrum.

These components can further be separated and this 
separation is equivalent to a regularization procedure. It 
should be stressed that in contrast to the common prac-
tice we did not use any low pass filter. Therefore, the 
proposed  method  is  free  from  the  undesired  conse-
quences  of  such  filtering.  As  a  result  a  regularized 
smooth solution gives unbiased estimations of  parame-
ters of the useful signal with a high-resolution capability.
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ПРИМЕНЕНИЕ ЦИФРОВОГО СПЕКТРАЛЬНОГО АНАЛИЗА 
К ЗАДАЧЕ ДЕКОМПОЗИЦИИ СПЕКТРОВ ВРЕМЕНИ ЖИЗНИ ПОЗИТРОНОВ 

А.И. Кульментьев

Предложен новый метод численного анализа спектров времени жизни позитронов. Он основан на цифро-
вом спектральном анализе, конкретно, на методе Прони. Сформулирована регуляризационная процедура ре-
шения обратной задачи нахождения параметров присутствующего в данных полезного сигнала. Предложен 
новый подход определения числа компонент в спектре. Результаты, полученные на модельных спектрах, де-
монстрируют высокую разрешающую способность метода.

ЗАСТОСУВАННЯ ЦИФРОВОГО СПЕКТРАЛЬНОГО АНАЛІЗУ
ДО ЗАДАЧІ ДЕКОМПОЗИЦІЇ СПЕКТРІВ ЧАСУ ЖИТТЯ ПОЗИТРОНІВ 

О.І. Кульментьєв

Запропоновано  новий  метод  чисельного  аналізу  спектрів  часу  життя  позитронів.  Він  базується  на 
цифровому  спектральному  аналізі,  а  саме  на  методі  Проні.  Сформульовано  регуляризаційну  процедуру 
вирішення  зворотної  задачі  знаходження  параметрів  корисного  сигналу,  який  присутній  у  даних. 
Запропоновано новий підхід до визначення числа компонент у спектрі. Результати, отриманні на модельних 
спектрах, демонструють високу роздільну здатність метода.
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