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space is considered. The transport coefficients of 4D Fokker-Planck equations are derived. The algorithms of aver-
aging procedure through superbanana motion are discussed. 
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1. INTRODUCTION  
The analysis of high energy particle confinement in 

a tokamak with three dimensional (3-D) perturbations of 
the magnetic field is usually a difficult task because of 
the large number of essential phase variables. A tradi-
tional problem for tokamak reactor studies is the evalua-
tion of fast particle losses (alpha particles in reactors). 
In addition to the well known first-orbit loss process, one 
of the possible loss mechanisms originates from the pres-
ence of ripples in the toroidal magnetic field (TF). This 
mechanism has been the subject of theoretical considera-
tions since the early days of tokamak research [1-4].  

The TF ripple arises from the discreteness of the tor-
oidal coils. These ripples are generally strongest and 
consequential for particle transport in the low-B side of 
a tokamak while being of less significance at the high-B 
side. Field perturbations of 1% are typical in the outer 
edge of a tokamak plasma and appear a few orders of 
magnitude smaller at the magnetic axis. 

Ripple losses of fusion α-particles in future toka-
mak-reactors are of concern first of all because the as-
sociated particle and heat fluxes may damage plasma-
facing component. For these reasons, ripple-induced α-
particles losses from proposed burning tokamak plas-
mas, in particular ITER, have been modelled by many 
authors [4-11]. 

There will be two main sources for forming TF rip-
ples in ITER. First, the toroidal magnetic field is created 
by the finite number (N=18) of toroidal field coils with 
spaces between them large enough to accommodate 
ports. The magnetic field ripples generated by the dis-
crete coil assembly will have toroidal mode numbers nN 
with n=1,2,…, where n=1 is the dominant mode. Plac-
ing ferritic inserts underneath the toroidal field coils can 
mitigate the amplitude of these ripples to a reasonable 
magnitude of magnetic perturbations. Second, when the 
test blanket modules (TBM) will be installed, their fer-
romagnetic materials are expected to significantly per-
turb the local toroidal field [12, 13]. 
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Early experimental studies on TF ripple have been 
focused on energetic ion losses, as the theory [3, 4] in-
dicated that TF ripple enhances the transport of trapped 
energetic ions only and that TF ripple diffusion of the 
trapped ions is much faster than axisymmetric neoclas-
sical diffusion. 

In fact, experiments have shown that 100 keV [14] 
and MeV passing ions [15] diffused radially as slowly 
as predicted by neoclassical diffusion [16-18]. The ra-
dial transport of MeV trapped ions was supposed to be 
determined predominantly by the collisionless stochas-
tic ripple diffusion [19]. Fortunately, both analytical 
analysis and simulation have predicted that the ripple 
losses of charged fusion products are not crucial in the 
power balance of burning plasma whose TF ripple am-
plitude is as low as - 1% [20]. In spite of that good out-
look, TF ripple transport of energetic ions is still of im-
portance and is critical to the design of a fusion reactor. 
This is mainly because the ripple induced excursion of 
energetic ions can result in serious localized heat depo-
sition on the first wall [21] and partly because the TF 
ripple transport probably determines the deposition pro-
file of alpha heating in the fusion reactor when severe 
instabilities are suppressed. 

TF ripples are known to create secondary magnetic 
wells at the outer plasma edge, most dominantly in the 
vicinity of the mid-plane [4]. Particles trapped in these 
wells are subject to enhanced radial transport and hence 
poorly confined in the plasma. The criterion for the ex-
istence of secondary ripple wells in a circular tokamak 
with large aspect ratio is ( )sin 1Nqα ε ϑ δ≡ < , where 
ε  denotes the local inverse aspect ratio, ϑ  the poloidal 
angle,  the number of toroidal field coils,  the safe-
ty factor and 

N q

( ) ( )max min max mint t t tB B B Bδ ≡ − +  the rip-
ple amplitude. Note that at the plasma periphery, where 
δ exceeds the critical value GWBδ  given by the Gold-
stone-White-Boozer stochastisity threshold, toroidally 
trapped particles are nearly promptly lost from the 
plasma during a time small in comparison with Cou-
lomb collision times [3,4]. Here we examine the ripple 
impact on toroidally trapped fast ion orbits with the ba-
nana tips in the plasma region where there are no ripple 
wells and the ripple magnitude is below the stochasticity 
threshold, i.e. where 1α >  and GWBδ δ< . The most sig-
nificant effect of TF ripples occurs for toroidally 
trapped fast ions which are in resonance with the ripple 
perturbations [6], i.e. for ions satisfying the resonance 
condition 0, 0, 1, 2,...b dl N lω ω− = = ± ± , where ωb 



and ωd are the particle’s bounce and toroidal precession 
frequencies. Such resonant toroidally trapped particles, 
so-called superbananas, undergo an increased radial 
diffusion and thus are responsible for a substantial con-
tribution to the TF ripple losses of energetic ions [5-6, 8, 
22-25]. 

The effect of the ripple collisional transport on the 
fast ions in tokamaks in mentioned case can be ade-
quately described by the Fokker-Planck equation in 3D 
constant of motion (COM) space [22-27]. The transport 
coefficients of this equation in the case of weak ripples, 

3 2
1 ( )Nqδ δ ε=� where ε  is the flux surface toroidic-

ity and q  the safety factor, were derived in [23]. 
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The main purpose of this paper is to present the ki-
netic description of transport processes (induced by col-
lisions and ripple orbital effects) of trapped fast ions in 
tokamak plasmas for the general case of arbitrary tor-
oidal field ripple magnitudes.  

In the section 2 SUPERBANANA FOKKER-
PLANCK EQUATION AND COM SPACE 
VARIABLES the outline of the approach of the Fokker-
Planck equation in 3D COM space is presented. Next 
section SUPERBANANA ORBIT is devoted to analysis 
of the single banana motion near the resonance level. 
The main results and conclusions are presented in the 
last section CONCLUSIONS. 

2. SUPERBANANA FOKKER-PLANCK 
EQUATION AND COM SPACE VARIABLES 

The approach for kinetic description of resonance 
ripple diffusion used here was firstly proposed in [23]. 
The main idea of this approach is that Fokker-Planck 
equation for trapped fast ions could be reduced to three-
dimensional equation in constants of motion (COM) 
space. These COM space variables could be chosen in 
different way. Following the approach in [23] V , λ  
and  are chosen, where V , maxpβ λ  and  are par-
ticle velocity, normalized magnetic moment and maxi-
mum value of angular canonical momentum 

maxpβ

pβ . It 
should be noted that pβ  is conjugate to variable β , 
defined as qβ ϕ ϑ= − , where ϕ  and ϑ  are toroidal 
and poloidal angles. 

In variables ( )max 3, , ,V pβλ ϑ′ =c , the Fokker-Planck 
equation can be represented as 
 , (1) ( ) ( )

33t f Cf Sϑϑ ′∂ + ∂ = + c&

with collision term in the form  C
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where 3ϑ  is cyclic variable determining the particle 
position on the superbanana orbit [23, 26], d  − the fric-
tion force and  − the diffusion tensor,D

t
g ′c  − the Jako-

bian for the new set of variables . The subscript ‘3’ 
indicates that 

′c
3ϑ  conjugate to the third COM variable 

. The friction force d and the diffusion tensor maxpβ D
t

 

describes correspondingly the convective and diffusive 
collisional transport of fast ions in a tokamak with the 
TF ripples in the ′c -space. 

The explicit expressions for d  and D  in the 
t

′c − 
space can be derived using expressions for  and Dd

t
 in 

another c -space of variables: 
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if , 3,i j 4= ; , 1,2,3,4k l = . For example, in [23] 

( ), , ,V pβλ ψ=c  is used as the set of the reference co-
ordinates. The variable ψ  is angular coordinate charac-
terizing the position of the banana in toroidal angle. It 
should be pointed out that transition from the set of vari-
ables ( ), , ,V pβλ ψ=c  to the set ( )max 3, , ,V pβλ ϑ′ =c  
gives an opportunity to separate in the Fokker-Planck 
equation the invariant and the oscillating parts. 

Further, following the approach of [23] the Fokker-
Planck equation (1) can be averaged over the cyclic 
variable 3ϑ . Such averaging corresponds to the time 
averaging over the superbanana bounce period 3τ , i.e.  

 
3

1... ...
orbit

dt
τ

= ∫� . (5) 

After averaging Fokker-Planck equation becomes 
three dimensional with all variables except time being 
the constants of motion.  

To obtain the explicit analytical expression for colli-
sion operator  in C ( )max 3, , ,V pβλ ϑ′ =c  one should 

calculate the derivatives 
l

k

c
c
′∂

∂
. It can be done in the 

framework of a single banana motion analysis. 

3. SUPERBANANA ORBIT 
This section is devoted to the investigation of the 

banana averaged motion in the vicinity of the l-th reso-
nance. This motion can be treated as the behavior of 1D 
system with canonical variables ( ),p ψ  and Hamilto-
nian  in the form [23]  h
 ( )2 2 cos cosh p M pξ ψ= − + , (6) 

where ( )lp g p pβ β′= −  is the generalized momentum 
representing the normalized toroidal momentum, ψ  is 
conjugate coordinate characterizing the position in tor-
oidal angle. lpβ  is the value of pβ  which exactly satis-
fies resonance condition for the l-th resonance. It should 
be noted, that lpβ  is function of V  and λ  only, i.e. 

( ),l lp p Vβ β λ= . The quantities , ,lM p gβ ′ and ξ  are 
considered as constant parameters of 1D system. The 
explicit expression for , , , , ,lp M p gβψ ξ′  and their rela-
tionship with the parameters of particle and magnetic 
configuration are defined in [23].  



To carry out the transition from the set of variables 
( ), , ,V pβλ ψ=c  to the set ( )max 3, , ,V pβλ ϑ′ =c  in Fok-

ker-Planck equation and find the expressions for 
lc c′∂ ∂
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k  the relationships between the old variables and 
new ones should be established.  

The variable  can be found from the following 
definition of 

maxpβ

maxp  − maximum value of variable  
along the superbanana orbit, 

p

(max max
lp g p p )β β′= − . 

Rather complex dependence ( ),h p ψ  does not allow to 
find the explicit analytical expressions for  and . 
However, required equation can be obtained and its so-
lution can be found numerically. 

p maxp

There is some freedom in definition of 3ϑ . It is con-
venient for averaging to define it as 

( ) ( ) ( )3 max maxsin 2 p p p pϑ = − − min

)
, where 

(min min
lp g p pβ′= − β  − minimum value of variable  

on the superbanana orbit. It should be mentioned that 
definition of cyclic variable 

p

3ϑ  differs from that in [23], 
but it gives an opportunity to simplify the averaging in 
the strong TF ripple limit [27]. Note also that 3ϑ is not 
the canonical variable.  

To obtain equation for  and  one should to 
calculate the derivative 

maxp minp
p ψ∂ ∂  taking into account that 

 at the fixed orbit. The equation h const− 0p ψ∂ ∂ =  
defines values of mψ ψ=  corresponding to the extreme 
values of ,  p
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Then substituting mψ ψ=  in Eq.6 one can find the fol-
lowing equations for  and : maxp minp
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m
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p
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 − constant which corresponds to value of Hamilto-

nian 
0h

( ,h p )ψ  at the labeled orbit. To separate pairs 
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Using these definitions, following expressions are 
derived  
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where following designations are used 
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( )2
max 2 ( )p h p tg pψ ξ= + − +& , 

( )( )sign( ) sign cosp p pψσ σ= = − +& & ξ , 

( )( )sign sinψσ ψ= , 

( )2
max max max2 cosmh p M pσ ξ= − + , 

( ) ( )22
3 mcos 2 p pϑϑ σΔ = Δ − − ax , 

( )( )3sign cos pϑσ ϑ σ= = − & , , max minp pΔ = −

( )max max maxsinmp pψ σ ξ= + +& , 

( )min min minsinmp pψ σ ξ′= + +& , 

( )maxcosmσ ψ= , . ( )mincosmσ ψ′ =

It should be noted that, as the dependence ( )pψ  can 
be expressed analytically from Eq. (6), the  variable is 
chosen for integration in averaging procedure, 

p

 ( ) ( )
3

1 f p
f t

pτ
= ∫ &� dp . (16) 

Expressions (10)-(15) allow to construct the friction 
force and the diffusion tensor Dd

t
, describing colli-

sional transport of fast ions in a tokamak with the TF 
ripples of arbitrary amplitude. The form of expressions 
(10)-(15) gives an opportunity to carry out the averaging 
of Fokker-Planck equation through banana orbit. 

4. CONCLUSIONS AND DISCUSSION 
The transport coefficients of Fokker-Planck equation 

describing collisional transport of fast ions in tokamaks 
with the arbitrary magnitude of TF ripple amplitude are 
derived.  

Transition from the set of COM variables in axi-
symmetric case to the set of COM variables in ripple 
perturbed case is done for the case of the arbitrary mag-
nitude of TF ripple amplitude. Expressions for friction 
force and diffusion tensor d D

t
, describing correspond-

ingly the convective and diffusive collisional transport 
of fast ions in a tokamak can be constructed using ob-
tained expressions. The expressions for derivatives have 
form which convenient for the averaging procedure 
through the banana orbit. 

ax

⎧ ⎫′∂ ⎪ ⎪= −⎨ ⎬
∂ Δ ⎪ ⎪⎩ ⎭

&

&
, (12) 

The one way for carrying out the averaging is to use 
numerical methods of calculating the corresponding 
integrals. It should be noted that most of them have sin-
gularities at the ends of integration domain, that is 
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)( min max,p p  arising from 0
mp p

p
=

=& . Another source of 

singularities in the derivatives from 3ϑ  is 

( )
min

3cos 2 0
p p

ϑ
=

Δ = . These circumstances should be 

taken into account when choosing the numerical method 
of integration. On the authors’ opinion the most appre-
ciable are Gauss-Legendre formulas.  

Another approach for averaging is based on using 
natural averaging procedure that is integrating the Ham-
ilton equations of motion 

 cos( )sin( )hp M pξ ψ
ψ
∂

= − = − +
∂

& , (17) 

 sin( )cos( )h p M p
p

ψ ξ ψ∂
= = + +
∂

& , (18) 

and approximation the integral by sum 

 
1

( ( ), ( )) ( , )
orbN

i i
i

f p t t dt f p tψ
=

≈ ∑∫� ψ Δ , (19) 

where ( , )i ip ψ  values of ( , )p ψ  obtained at i -th step of 
integration of Eqs.(17-18) and  − step of integration. 
It is obviously that this method is time expensive but 
very simple in realization, for example using Runge-
Kutta schemes. 

tΔ

Second method can be recommended for validation 
and verification of the quadrature formulas in first ap-
proach. Besides that the quadrature formulas in first 
approach can be verified using exact values of some 
integrals, for example  

0dtψ =∫ &�  for trapped bananas and  

2dtψ π=∫ &� for passing bananas, 

0pdt =∫ &�  for both orbits. 
Using the integral properties of odd and even func-

tions and symmetry of the diffusion tensor D
t

 can con-
siderably minimize the calculations.  
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УРАВНЕНИЕ ФОККЕРА-ПЛАНКА ДЛЯ ЗАПЕРТЫХ ЧАСТИЦ 
В ТОКАМАКЕ С ГОФРИРОВАННЫМ ТОРОИДАЛЬНЫМ ПОЛЕМ 

Ю.К. Москвитина, В.А. Яворский, K. Шопф 
Представлено кинетическое описание резонансной гофрировочной диффузии быстрых ионов в токама-

ках с гофрировкой тороидального поля в общем случае произвольных значений величины гофрировки то-
роидального поля. Рассмотрена топология орбит бананов в фазовом пространстве. Получены транспортные 
коэффициенты четырёхмерного уравнения Фоккера-Планка. Обсуждаются алгоритмы процедуры усредне-
ния по супербанановому движению.  

РІВНЯННЯ ФОККЕРА-ПЛАНКА ДЛЯ ЗАПЕРТИХ ЧАСТИНОК 
В ТОКАМАЦІ З ГОФРОВАНИМ ТОРОЇДАЛЬНЫМ ПОЛЕМ 

Ю.К. Москвітіна, В.О. Яворський, K. Шопф 
Представлено кінетичний опис резонансної гофрувальної дифузії швидких іонів в токамаках з гофрова-

ним тороїдальним полем в загальному випадку довільних значень величини гофрування тороїдального поля. 
Розглянуто топологію орбіт бананів у фазовому просторі. Здобуто транспортні коефіцієнти чотиривимірного 
рівняння Фоккера-Планка. Розглянуто алгоритми процедури осереднення по супербанановому руху.  
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