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A theory of coherent X-ray radiation of a relativistic electron crossing the artificial periodic medium in the Laue

scattering geometry is constructed. The expressions describing the spectral and angular characteristics of radiation

in the direction of Bragg scattering are obtained and investigated. By analogy with the radiation emission in a

crystalline medium this radiation is considered as the result of coherent summation of the contributions of two

radiation mechanisms: parametric (PXR) and diffracted transition (DTR). It is shown that the yield of DTR from

layered target can be more than one order higher than the yield in single crystal radiator, under similar conditions.

The manifestations of the Borrmann effect for DTR in the artificial multilayer environment are demonstrated for a

Laue scattering geometry.
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1. INTRODUCTION

When a charged particle crosses the entrance sur-
face of the crystal plate the transition radiation arises
(TR) [1], which then is diffracted by a system of par-
allel atomic planes of the crystal, forming the dif-
fracted transition radiation DTR [2-4]. At the same
time a charged particle Coulomb field is scattered by
a system of parallel atomic planes of the crystal, cre-
ating a parametric X-ray radiation (PXR) [5-7]. In
the scheme of the symmetric reflection when the sys-
tem of diffracting atomic planes is perpendicular (in
the case of Laue scattering geometry) or parallel (in
the case of Bragg scattering) to the surface of the
crystal plate, the radiation mechanisms in the two-
wave approximation of dynamic diffraction theory
were considered in [8-11]. In the general case of asym-
metric reflection of the radiation from the plate when
the diffracted atomic planes make an arbitrary angle
with the surface of the plate, the dynamic effects of
PXR and DTR are considered in [12-15], where it was
shown that by changing the asymmetry of reflection,
we can significantly increase the radiation yield. Tra-
ditionally, the radiation of a relativistic particle in a
periodically layered structure was considered in the
Bragg scattering geometry for the case where the re-
flecting layers are parallel to the entrance surface, i.e.
for the case of symmetric reflection. The radiation in
a periodic layered structure is usually viewed as res-
onant transition radiation [5, 16]. In the works [17],
the radiation from an artificial periodic structure was
represented as the sum of diffracted transition radia-

tion (DTR) and parametric X-ray radiation (PXR).
In the cited works the radiation of relativistic parti-
cles in an artificial periodic structure was considered
only in the Bragg scattering geometry for the special
case of symmetric reflection of the particle field with
respect to the target surface, when the diffracted lay-
ers are parallel to the target surface. In the present
paper we consider the coherent X-ray radiation scat-
tering in the Bragg direction generated by relativistic
electron crossing the artificial periodic structure in
the Laue scattering geometry. By analogy with the
crystalline environment the coherent radiation is con-
sidered as the sum of PXR and DTR contributions.
On the basis of two-wave approximation of dynamic
diffraction theory [18] the expressions describing the
spectral and angular characteristics of radiation are
derived.

2. AMPLITUDE OF THE RADIATION

We analyze the radiation emitted by a relativis-
tic electron passing through a multilayer structure
(Fig. 1) consisting of periodically arranged amor-
phous layer with thickness a and b respectively (is
the structure period) with the dielectric susceptibil-
ity χa and χb respectively.

We consider the equation for the Fourier trans-
form of the electromagnetic field

E(k, ω) =
∫

dtd3rE(r, t) exp(iωt− ikr) . (1)

We use the two-wave approximation of dynamic dif-
fraction theory, in which the incident and diffracted
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wave are considered on equal grounds. Since the elec-
tromagnetic field associated with a relativistic parti-
cle can accurately be considered as transverse both
incident E0(k, ω) and diffracted Eg(k, ω) electromag-
netic waves are determined by two amplitudes with
different values of transverse polarization

E0(k, ω) = E
(1)
0 (k, ω)e(1)

0 + E
(2)
0 (k, ω)e(2)

0 ,

Eg(k, ω) = E(1)
g (k, ω)e(1)

1 + E(2)
g (k, ω)e(2)

1 , (2)

where the unit vectors of polarization e(1)
0 and e(2)

0

are perpendicular to vector k , and vectors e(1)
1 and

e(2)
1 are perpendicular to vector kg = k + g. Vectors

e(2)
0 and e(2)

1 lie in the plane of the vectors k and kg

(π-polarization), and vectors e(1)
0 and e(1)

1 are perpen-
dicular to this plane (σ-polarization). The vector g is
defined similarly to the reciprocal lattice vector in the
crystal - it is perpendicular to the layers of protection,
and its length is equal to g = 2π

T n, n = 0,±1,±2, · · ·
The equations for the Fourier transform of the

electromagnetic field in a two-wave approximation of
dynamical diffraction theory have the form [19]:

{
(ω2(1 + χ0)− k2)E(s)

0 + ω2χ−gC(s)E
(s)
g = 8π2ieωθV P sδ(ω − kV),

ω2χgC(s)E
(s)
0 + (ω2(1 + χ0)− k2

g)E(s)
g = 0,

(3)

where χg, χ−g are coefficients of the Fourier ex-
pansion of the periodic structure dielectric suscepti-

bility over the reciprocal vectors g:

χ(ω, r) =
∑
g

χg(ω)exp(igr) =
∑
g

(χ′g(ω) + iχ′′g(ω)exp(igr) . (4)

The values Cs and P s in the system (3) are de-
fined as follows

C(s) = e(s)
0 e(s)

1 , C(1) = 1, C(2) = cos 2θB ,

P (s) = e(s)
0 (µ/µ), P (1) = sin ϕ,P (2) = cos ϕ, (5)

where µ = k − ωV/V2 is the component of the
virtual photon momentum perpendicular to the
particle velocity V, µ = ωθ/V, θ ¿ 1 is the an-
gle between vectors k and V, θB is Bragg angle,
ϕ is the radiation azimuth angle measured from
the plane formed by the velocity vector V and g

Fig.1. Geometry of the radiation process and
the system of the using parameters notations, θ
and θ′are the radiation angles, θB is Bragg angle,
kand kg are wave vectors of incident and diffracted
photons

The vector g length can be also expressed through
the Bragg angle θB and the Bragg frequency ωB :
g = 2ωB sin θB/V . The angle between the vector
ωV
V 2 and the wave vector k of the incident wave is

marked θ and the angle between the vector ωV
V 2 + g

and the diffracted wave vector kg is indicated as
θ′. The system (3) under s = 1 describes the fields
of σ-polarization, and under s = 2 the fields of π-
polarization. The values χ0 and χg are defined as
follows:

χ0(ω) =
a

T
χa +

b

T
χb,

χg(ω) =
exp(−iga)− 1

igT
(χb − χa)

χ′0 =
a

T
χ′a +

b

T
χ′b, χ′′0 =

a

T
χ′′a +

b

T
χ′′b

Re
√

χgχ−g =
2 sin( ga

2 )
gT

(χ′b − χ′a),

Im
√

χgχ−g =
2 sin( ga

2 )
gT

(χ′′b − χ′′a) . (6)

By solving the dispersion equation following from the
system (3)

(ω2(1+χ0)−k2)(ω2(1+χ0)−k2
g)−ω4χ−gχgC(s)2 = 0

(7)
with the use of standard methods of dynamical the-
ory [18], we find the expression for k and kg:

k = ω
√

1 + χ0 + λ0, kg = ω
√

1 + χ0 + λg, (8)

λ(1,2)
g =

ω

4
(β ±

√
β2 + 4χgχ−gC(s)2

γg

γ0
), (9)

λ
(1,2)
0 = ω

γ0

4γg
(−β ±

√
β2 + 4χgχ−gC(s)2

γg

γ0
), (10)

where β = α − χ0(1 − γg

γ0
), α = 1

ω2 (k2
g − k2),

γ0 = cos ψ0, γg = cos ψg, ψ0 - the angle between the
wave vector of the incident wave k and vector normal
to the surface of the plate n, ψg is the angle between
the wave vector kg and the vector n (see Figure 1).
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Dynamic additions λ0 and λg for X-ray wave vectors
are related by formula

λg =
ωβ

2
+ λ0

γg

γ0
. (11)

Since the dynamic additions are small: |λ0| ¿ ω,

|λg| ¿ ω, one can show that θ ≈ θ′ (see Fig. 1),
therefore further we will use the notation for both of
these angles.

We represent the solution of the system of equa-
tions (3) for the diffracted field in a periodic structure
in such a form:

E(s)medium
g = −8π2ieV θP (s)

ω

ω2χgC(s)

4γ2
0

γ2
g
(λg − λ

(1)
g )(λg − λ

(2)
g )

×

×δ(λg − λ∗g) + E(s)
g

(1)
δ(λg − λ(1)

g ) + E(s)
g

(2)
δ(λg − λ(2)

g ), (12a)

where λ∗0 = ω(γ−2+θ2−χ0
2 ), λ∗g = ωβ

2 + γg

γ0
λ∗0,

γ = 1/
√

1− V 2-Lorentz factor of the particle, E
(s)
g

(1)
and E

(s)
g

(2)
are free diffracted fields in the multilayer

target. For the field in vacuum in front of the radiator
the solution of (3) has the form:

E
(s)vacI
0 =

8π2ieV θP (s)

ω

1
−χ0 − 2

ω λ0

δ(λ0−λ
(∗)
0 ) =

8π2ieV θP (s)

ω

1
γ0
γg

(−χ0 − 2
ω

γ0
γg

λg + β γ0
γg

)
δ(λg−λ∗g), (12b)

where we use the relation δ(λ0 − λ∗0) = γg

γ0
δ(λg −

λ∗g). The diffracted field behind the radiator in vac-
uum is as follows:

E(s)vac
g = E(s)Rad

g δ(λg +
ωχ0

2
), (12c)

where E
(s)Rad
g is the field of coherent radiation in

the direction close to the Bragg direction. From the
second equation of the system (3) we can derive the
expression relating the incident and diffracted fields
in the medium:

E
(s)medium
0 =

2ωλg

ω2χgC(s)
E(s)medium

g . (13)

To determine the amplitude of the field E
(s)Rad
g , we

use the boundary conditions at the entrance and exit

surfaces of the multilayer plate:
∫

E
(s)vacI
0 dλ0 =

∫
E

(s)medium
0 dλ0, (14a)

∫
E(s)medium

g dλ0 = 0, (14b)

∫
E(s)medium

g exp(i
λg

γ g

L)dλg =

=
∫

E(s)vac
g exp(i

λg

γ g

L)dλg. (14c)

We will present the radiation field in the form of two
terms:

E(s)Rad
g = E

(s)
PXR + E

(s)
DTR, (15a)

E
(s)
PXR = −8π2ieV θP (s)

ω

ω2χgC(s)

8 γ0
γg

√
β2 + 4χgχ−gC(s) γg

γ0

1
λ∗0
×

[(
β +

√
β2 + 4χgχ−gC(s)

γg

γ0

)
×

×

1− exp(−i

λ∗g−λ(2)
g

γg
L)

λ∗g − λ
(2)
g


−

(
β −

√
β2 + 4χgχ−gC(s)

γg

γ0

)
×

×

1− exp(−i

λ∗g−λ(1)
g

γg
L)

λ∗g − λ
(1)
g




]
exp

[
i(

ωχ0

2
+ λ∗g)

L

γg

]
, (15b)

E
(s)
DTR =

8π2ieV θP (s)

ω

χgC(s)

γ0
γg

√
β2 + 4χgχ−gC(s) γg

γ0

(
ω

−ωχ0 − 2λ∗0
+

ω

2λ∗0

)
×

×
[
exp

(
−i

λ∗g − λ
(1)
g

γg
L

)
− exp

(
−i

λ∗g − λ
(2)
g

γg
L

)]
exp

[
i
(ωχ0

2
+ λ∗g

) L

γg

]
. (15c)
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The expression (15b) and (15c) represent the am-
plitudes of the radiation fields, similar to the ampli-
tudes of PXR and DTR in a crystal. The DTR is the
result of diffraction by a periodically layered artificial

structure of the transition radiation, which is gener-
ated on the front surface of the target. For further
analysis of the radiation, the dynamic addition (9)
can be represented as follows:

λ(1,2)
g =

ω|χ′g|C(s)

2

(
ξ(s) − iρ(s)(1− ε)

2
±

±
√

ξ(s)2 + ε− 2iρ(s)

(
(1− ε)

2
ξ(s) + κ(s)ε

)
− ρ(s)2

(
(1− ε)2

4
+ κ(s)2ε

))
, (16)

where ξ(s) = η(s)(ω) + 1−ε
2ν(s) ,

η(s)(ω) =
α

2
∣∣Re

√
χgχ−g

∣∣ C(s)
≡ sin2 θB

V 2C(s)

gT

|χ′b − χ′a|
∣∣sin (

ga
2

)∣∣
(

1− ω(1− θ cos ϕ cot θb)
ωB

)
,

ν(s) =
C(s)Re

√
χgχ−g

χ′0
≡ 2C(s)

∣∣sin( ga
2 )

∣∣
g

∣∣∣∣
χ′b − χ′a

aχ′a + bχ′b

∣∣∣∣ ,

ρ(s) =
χ′′0∣∣Re

√
χgχ−g

∣∣ C(s)
≡ aχ′′a + bχ′′b
|χ′b − χ′a|C(s)

g

2
∣∣sin (

ga
2

)∣∣ ,

κ(s) =
χ′′gC(s)

χ′′0
≡ 2C(s)

∣∣sin (
ga
2

)∣∣
g

∣∣∣∣
χ′′b − χ′′a

aχ′′a + bχ′′b

∣∣∣∣ , ε =
γg

γ0
. (17)

An important parameter in (17) is the parame-
ter that determines the degree of the field reflection
asymmetry relative to the target surface, which can
be represented as

ε =
sin(δ + θB)
sin(δ − θB)

, (18)

where θB is the angle between the electron ve-
locity and reflective layers, δ - the angle be-
tween the target surface and reflective lay-
ers. Note that the angle of electron incidence
on the target surface increases when the pa-
rameter decreases, and vice versa (see Fig.2).

Fig.2. Schema of the asymmetric (ε > 1 and
ε < 1 cases) reflection of the radiation from the
crystal plate. The case (ε = 1 ) corresponds to the
symmetric reflection

3. SPECTRAL-ANGULAR RADIATION
DENSITY

Substituting (16) for λ
(1,2)
g into (15b) and (15c), then

substituting (15b) for E
(s)
PXR and (15c) for in the well-

known [19] expression for the spectral-angular density
of X-rays

ω
d2N

dωdΩ
= ω2(2π)−6

2∑
s=1

∣∣∣E(s)Rad
g

∣∣∣
2

, (19)

we will obtain the expression for summands, describ-
ing the contributions to the spectral-angular density
of the radiation of the mechanisms PXR, DTR and of
the summand, which is the result of the interference
of these radiation mechanisms.

ω
d2N

(s)
PXR

dωdΩ
=

e2

4π2
P (s) θ2

(θ2 + γ−2 − χ′0)
2 R

(s)
PXR,

(20a)

R
(s)
PXR =

1 + exp(−2b(s)ρ(s)∆(1))− 2exp(−b(s)ρ(s)∆(1)) cos
(

b(s)

(
σ(s) + ξ−

√
ξ2+ε

ε

))

(
σ(s) + ξ−

√
ξ2+ε

ε

)2

+ ρ(s)2∆(1)2

×

×
(

1− ξ√
ξ2 + ε

)2

(20b)
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ω
d2N

(s)
DTR

dωdΩ
=

e2

4π2
P (s)2θ2

(
1

θ2 + γ−2
− 1

θ2 + γ−2 − χ′0

)2

R
(s)
DTR, (21a)

R
(s)
DTR =

4ε2

ξ2 + ε
exp

(
−b(s)ρ(s) 1 + ε

ε

)
×


sin2


b(s)

(√
ξ2 + ε

)

ε


 + sh2

(
b(s)ρ(s) (1− ε)ξ(s) + 2εκ(s)

2ε
√

ξ2 + ε

)
 ,

(21b)
where

∆(1) =
ε + 1
2ε

− 1− ε

2ε

ξ(s)

√
ξ(s)2 + ε

− κ(s)

√
ξ(s)2 + ε

,

σ(s) =
1

|χ′g|C(s)
(θ2 + γ−2 − χ′0) ≡

1
ν(s)

(
θ2

|χ′0|
+

1
γ2|χ′0|

+ 1
)

,

b(s) =
ω|Re

√
χgχ−g|C(s)

2
L

γ0
. (22)

The expressions (20)-(21) constitute the main re-
sult of this work. They are obtained in two-wave
approximation of dynamic diffraction theory, taking
into account the absorption of radiation in the layered
plate substances and the orientation of the diffract-
ing layers relative to the surface of the plate. These
expressions allow us to investigate the spectral and
angular characteristics of radiation depending on the
energy of relativistic electrons and on the parameters

of the artificial periodic structure of the target.

4. ANALYSIS OF DTR WAVE.
BORMANN EFFECT

Since two X-ray waves determine the DTR yield, for
the analysis of their contributions to the radiation
spectral density it is convenient to represent the ex-
pression (21b) in such a form:

R
(s)
DTR =

ε2

ξ(ω)2 + ε

[
e
−b(s)ρ(s)

�
1+ε

ε − (1−ε)ξ(s)+2εκ(s)

ε
√

ξ2+ε

�

+ e
−b(s)ρ(s)

�
1+ε

ε +
(1−ε)ξ(s)+2εκ(s)

ε
√

ξ2+ε

�

−

−2 · e−b(s)ρ(s) 1+ε
ε · cos

(
2b(s)

√
ξ2 + ε

ε

) ]
. (23)

When consider the expression (23), one can see
that the terms in brackets successively describe the
waves belonging to the first and second fields, and

their interference. Next we write the expression (23)
in a more demonstrable form of

R
(s)
DTR =

ε2

ξ(ω)2 + ε

[
e−Lf µ

(s)
1 + e−Lf µ

(s)
2 − 2 · e−Lf µ0( 1+ε

2 ) · cos

(
Lf

L
(s)
ext

√
ξ2 + ε

)]
, (24)

where

µ
(s)
1 = µ0

[
1 + ε

2
− (1− ε)ξ(s) + 2εκ(s)

2
√

ξ2 + ε

]
,

µ
(s)
2 = µ0

[
1 + ε

2
+

(1− ε)ξ(s) + 2εκ(s)

2
√

ξ2 + ε

]
, (25)

where Lf is the path of a photon in a crystal,
µ0 = ωχ′′0 - the linear coefficient of X-waves absorp-
tion in the averaged amorphous medium, L

(s)
ext =

1
ω|Re

√
χgχ−g|Cs - the length of the X-waves extinc-

tion in a periodic medium. The formula (24) clearly
demonstrates the dynamic Borrmann effect arising
during the passage of X-rays DTR through a peri-
odic medium. Namely, in the X-ray scattering in a
periodical medium the abnormal weak absorption is
observed for the first wave field µ

(s)
1 ¿ µ0 (i.e. anom-

alous transmission of the first field X-rays) and abnor-
mal strong absorption for the second one µ

(s)
2 > µ0.

By this reason, for the sufficiently large photon path
in the substance of the plate the DTR only by one
of the fields in a periodic structure will be formed,
namely, by the field with effective absorption coeffi-
cient µ

(s)
1 .

Physics of the Borrmann effect [20] consists in the
formation of the standing waves from the incident and
scattered waves, whose antinodes are localized in the
regions of space with a lower electron density for one
of the waves (first term in (23) and (24)) and in the
regions of space with a higher electron density for
second wave (second term in (23) and (24)). Para-
meter κ(s) appearing in (25) determines the degree
of manifestation of the Borrmann effect in the anom-
alous X-ray waves passing through a periodic struc-
ture. As in the case of free X-ray waves in crystals,

276



a prerequisite for manifestation of the effect of DTR
in layered medium is the condition κ(s) ≈ 1, corre-
sponds to the minimal value of the linear absorption
coefficient µ

(s)
1 . Next, we will carry out a numerical

analysis for each of the waves and of their interfer-
ence term separately. For this purpose the expression
(23) we write in the following form

R
(s)
DTR = R

(s)
1 + R

(s)
2 + R

(s)
int, (26a)

R
(s)
1 =

ε2

ξ(ω)2 + ε
e
−b(s)ρ(s)

�
1+ε

ε − (1−ε)ξ(s)+2εκ(s)

ε
√

ξ2+ε

�

,

(26b)

R
(s)
2 =

ε2

ξ(ω)2 + ε
e
−b(s)ρ(s)

�
1+ε

ε +
(1−ε)ξ(s)+2εκ(s)

ε
√

ξ2+ε

�

,

(26c)

R
(s)
int = − 2ε2

ξ(ω)2 + ε
e−b(s)ρ(s) 1+ε

ε · cos

(
2b(s)

√
ξ2 + ε

ε

)

(26d)
We will carry out the calculations for σ-polarized
waves, i.e. for s = 1. In order to get demonstra-
ble results, we will consider the case when the layers
are of equal thickness a = b = T/2. We will consider
the reflections, that correspond to g = 2π

T . In this
case, the parameters in the expressions (26) will take
the following values:

ξ(ω) =
2π sin2(θB)
|χ′b − χ′a|

·
(

1− ω

ωB

)
+

1− ε

2ν(1)
,

κ(1) =
2
π
·
∣∣∣∣
χ′′b − χ′′a
χ′b + χ′a

∣∣∣∣ , ρ(1) =
π

2
·
∣∣∣∣
χ′′b + χ′′a
χ′b − χ′a

∣∣∣∣ ,

ν(1) =
2
π
·
∣∣∣∣
χ′b − χ′a
χ′b + χ′a

∣∣∣∣ , b(1) =
ωB |χ′b − χ′a|

2π sin(δ − θB)
L. (27)

For a thin target (b(1) = 5), the curves drawn
by (26), are s hown in Fig. 3 describing the spec-
tral density of the DTR (for ωB = 8κeV ) in
the artificial periodic structure consisting of amor-
phous layers of beryllium (Be) and tungsten (W).
We see in this case, that the DTR is formed by
the fields of two waves in a periodic structure,
whose contributions in the spectral distribution
are of comparable magnitude which will cause a
strong interference of these waves. The interfer-
ence term brings oscillations in the spectral density.

Fig.3. The contributions of the two fields,
R

(1)
1 and R

(1)
2 , and of their interference term

R
(1)
int into the total spectral density of DTR

R
(1)
DTR = R

(1)
1 + R

(1)
2 + R

(1)
int

With increase of the target thickness one of the
waves decays rapidly (Figs. 4, 5), while the other
one traverses the target without a significant de-
crease in amplitude. Under these conditions the
contribution of the interference term markedly de-
creases and the spurious peaks in the spectrum are
attenuated and then completely disappear (Fig. 6).

Fig.4. The same as Fig.3 for bigger target thickness

Fig.5. The same as in Fig.4 for bigger target thick-
ness

Fig.6. The spectral density of the relativistic elec-
tron DTR for different values of the target thickness

It should be noted that the spectral curves in Fig. 5
and Fig. 6 are constructed for a large target thick-
ness, when the photon path length is longer than the
average photo-absorption in an amorphous medium
labs = 1

µ0
, which corresponds to the conditions of the

Borrmann effect manifestation in an artificial peri-
odic structure. We should note also that with the
increase in target thickness the monochromaticity of
DTR grows.

277



5. ANGULAR DENSITY OF DTR AND
PXR

For the case of σ- polarized waves the expressions (20)
and (21) describing the spectral-angular distributions
of PXR and DTR take the form:

ω
d2N

(1)
PXR

dωdΩ
=

e2

4π2

θ2
⊥(

θ2
⊥ + γ−2 + |χ′a+χ′b|

2

)2 RPXR, (27a)

RPXR =


1− ξ(ω)√

ξ(ω)2 + ε




2

1 + e−2b(1)ρ(1)∆(1) − 2e−b(1)ρ(1)∆(1)
cos

(
b(1)Ω(1)(ω)

)

Ω(1)(ω)2 +
(
ρ(s)∆(1)

)2 , (27b)

ω
d2N

(1)
PXR

dωdΩ
=

e2

4π2
θ2
⊥

(
1

θ2
⊥ + γ−2

− 1

θ2
⊥ + γ−2 + |χ′a+χ′b|

2

)2

RDTR, (28a)

RDTR =
4ε2

ξ(ω)2 + ε
exp

(
−b(1)ρ(1) 1 + ε

ε

)
×

×

sin2


b(1)

(√
ξ(ω)2 + ε

)

ε


 + sh2

(
b(1)ρ(1) (1− ε)ξ(ω) + 2εκ(1)

2ε
√

ξ(ω)2 + ε

)
 , (28b)

where

Ω(1)(ω) = σ(θ, γ) +
(
ξ(ω)−

√
ξ(ω)2 + ε

)
/ε,

σ(θ, γ) =
π

|χ′b − χ′a|
(

θ2
⊥ + γ−2 +

|χ′a + χ′b|
2

)

∆(1) =
1 + ε

2ε
− 1− ε

2ε

ξ√
ξ2 + ε

− κ(1)

√
ξ2 + ε

,

ξ(ω) =
2π sin2(θB)
|χ′b − χ′a|

· (1− ω

ωB
) +

1− ε

2ν(1)
,

κ(1) =
2
π
·
∣∣∣∣
χ′′b − χ′′a
χ′′b + χ′′a

∣∣∣∣

ρ(1) =
π

2
·
∣∣∣∣
χ′′b + χ′′a
χ′′b − χ′′a

∣∣∣∣

ν(1) =
2
π
·
∣∣∣∣
χ′b − χ′a
χ′b + χ′a

∣∣∣∣

b(1) =
ωB |χ′b − χ′a|

2πsin(δ − θB)
L, θ⊥ = θ sin ϕ. (29)

The angular densities of PXR and DTR of rela-
tivistic electron in periodical multilayer plate can be
written in the following way:

dN
(1)
PXR

dΩ
=

e2

4π2

θ2
⊥(

θ2
⊥ + γ−2 + |χ′a+χ′b|

2

)2

∫
RPXR

dω

ω
, (30a)

dN
(1)
DTR

dΩ
=

e2

4π2
θ2
⊥

(
1

θ2
⊥ + γ−2

− 1

θ2
⊥ + γ−2 + |χ′a+χ′b|

2

)2 ∫
RDTR

dω

ω
. (30b)

To bring into comparison the angular radiation
densities in artificial periodic and crystal media in
approximately equal conditions, we write the expres-

sion for the angular density of DTR in the crystal for
- polarized waves in the following way:

dN
(1)Cr
DTR

dΩ
=

e2

4π2
θ2
⊥

(
1

θ2
⊥ + γ−2

− 1
θ2
⊥ + γ−2 − χ′0

)2 ∫
RDTR

dω

ω
. (31)

Here the notations corresponding to (26) have the form

κ(1) =
χ′′g
χ′′0

, ρ(1) =
χ′′0
|χ′g|

, ν(1) =
χ′g
χ′0

, σ(θ, γ) =
1
|χ′g|

· (θ2
⊥ + γ−2 − χ′0),

ξ(ω) =
2 sin2(θB)
|χ′g|

· (1− ω

ωB
) +

1− ε

2ν(1)
, θ⊥ = θ sinϕ. (32)
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By formulae (30 b) and (31) the curves of
the angular density of DTR (ωB = 8κeV )
in the crystalline tungsten (W) target (see
Fig. 7) and DTR in an artificial periodic struc-
ture consisting of amorphous layers of beryl-
lium Be and tungsten W (Fig. 8) are constructed.

Fig.7. The angular density of DTR of the rela-
tivistic electron crossing a plate of single crystal (W)

The paths of the electron Le = 50µm and of DTR
photon Lfot = 16, 6µm in the target have been chosen
the same for both the cases. As it follows from Fig. 7
and Fig. 8 the angular density of the DTR in the
artificial periodic structure is more than three orders
of magnitude greater than the angular density of the
crystal DTR in the crystal under similar conditions.

Fig.8. The DTR angular density of the relativistic
electron crossing the artificial periodic structure (Be
W) under the conditions close to the ones which
presented in Fig.7

The curves in Fig. 9, constructed by the formula
(27) demonstrate the DTR spectra in the artificial
periodic structure for different observation angles.
As it follows from Fig. 9, the frequency of the DTR
considerably depends on the observation angle that
leads to the radiation monochromaticity degrada-
tion. Curves in Fig. 10, constructed by the formula
(28), show the spectra of DTR at two different an-
gles of the observation. It follows from Fig. 10, that
DTR is more monochromatic than PXR, which is
interesting from the standpoint of creating an in-
tense quasi-monochromatic X-ray source. It should
be noted that the curves in Fig. 10, as in Fig. 8 are

built under the conditions when the Bormann ef-
fect is pronounced in artificial periodic structure.

Fig.9. The spectra of the PXR at different
observation angles

Let us consider the effect of reflection asymme-
try in the field relative to the target surface on
the spectral-angular characteristics of the DTR.

Fig.10. The spectra of the DTR at different
observation angles

Figs. 11 and 12 show curves similar to curves con-
structed in Figs. 8 and 10, but for the other value
of the asymmetry parameter ε. The length of the
photon path Lfot = 16, 6µm is taken the same in
both the cases. We can see that the width of the
DTR spectrum increases with the increase of asym-
metry (see Fig. 12), which leads to an increase in the
angular density of DTR (11). This effect is due to
the dependence of the linear absorption coefficient
of the first field (25) on the asymmetry of reflection.

Fig.11. The same as in Fig.8 under other value of
asymmetry parameter ε
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Fig.12. The same as in Fig.10, but for other value
of asymmetry parameter ε

Let us consider the opportunity to optimize the
DTR yield, choosing a target thickness value L.
For this we construct the dependence on the tar-
get thickness of the angular density of DTRI at
a fixed angle of observation (Fig. 13). As it is
seen in Fig. 13, when the target thickness in-
creases the density of PDI at first increases but
then decreases because of absorption in medium.

Fig.13. The dependence of the DTR yield on the
target thickness for a fixed observation angle θ

The oscillations observed in the dependence of the
radiation angular density on target thickness re-
flects the process of energy transfer from the inci-
dent wave to reflected wave and back. The target
thickness corresponding to the first maximum in
the curve of the DTR angular density is optimal
for the target as a radiator. We present the cal-
culated curves for the angular density of DTR and
PXR at the optimum target thickness in Fig. 13. As
it seen from Fig. 14, the angular density of DTR
is significantly higher than the angular density of
PXR in the same target and more than 10 times

higher than the angular density for the DTR in
a target of nonoptimal thickness shown in Fig. 8.

Fig.14. The comparison of the DTR and PXR
densities for optimal for DTR thickness of the target

6. CONCLUSIONS

A theory for the coherent radiation of the relativis-
tic electron crossing an artificial periodic structure is
constructed for the case of Laue scattering geometry.
The expressions for spectral-angular characteristics
of the radiation in Bragg direction are derived and
investigated.

The contributions to the DTR yield of two X-ray
waves, which are responsible for DTR formation, are
studied. It is shown that with increase of the target
thickness, one of the waves is absorbed anomalously
strongly and the other wave abnormally weakly, i.e.
the Borrmann effect is manifested in DTR in an ar-
tificial periodic structure in the Laue geometry

Based on these expression it is shown that the
angular density of diffracted transition radiation in
layered target is more than one order higher than
the density for a single crystal radiator under similar
conditions.

It was found, that DTR in artificial periodic
structure is more monochromatic than parametric X-
radiation (PXR). In this connection, DTR mecha-
nism may be more promising in terms of the building
a new intense tunable X-ray source on the basis of the
relativistic electron interaction with artificial multi-
layer structure. It is shown, that DTR yield in an
artificial periodic structure in the direction of max-
imum angular density is increasing as a function of
target thickness up to some optimal value of thickness
and then decrease because of the photoabsorption in
the target substance.
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ДИНАМИЧЕСКАЯ ТЕОРИЯ ИЗЛУЧЕНИЯ РЕЛЯТИВИСТСКОГО ЭЛЕКТРОНА
В ПЕРИОДИЧЕСКОЙ СЛОИСТОЙ СРЕДЕ В ГЕОМЕТРИИ ЛАУЭ

С.В. Блажевич, Ю.П. Гладких, А.В. Носков

Построена теория когерентного рентгеновского излучения релятивистского электрона, пересекающего
искусственную периодическую среду в геометрии рассеяния Лауэ. Получены и исследованы выраже-
ния, описывающие спектрально-угловые характеристики излучения в направлении рассеяния Брэгга.
Излучение рассматривается, по аналогии с излучением в кристаллической среде, как результат коге-
рентного сложения вкладов двух механизмов излучения – параметрического рентгеновского (ПРИ) и
дифрагированного переходного (ДПИ). Показано, что выход ДПИ из слоистой мишени может более
чем на порядок превышать выход излучения частицы в монокристаллическом радиаторе в аналогич-
ных условиях. Показаны проявления эффекта Бормана в ДПИ в периодической слоистой среде для
геометрии рассеяния Лауэ.

ДИНАМIЧНА ТЕОРIЯ ВИПРОМIНЮВАННЯ РЕЛЯТИВIСТСЬКОГО ЕЛЕКТРОНА
В ПЕРIОДИЧНОМУ ШАРОВОМУ СЕРЕДОВИЩI В ГЕОМЕТРIЇ ЛАУЕ

С.В. Блажевич, Ю.П. Гладких, А.В. Носков

Побудована теорiя когерентного рентгенiвського випромiнювання релятивiстського електрона, який
перетинає штучне перiодичне середовище в геометрiї розсiювання Лауе. Отриманi i дослiдженi вирази,
якi описують спектрально-кутовi характеристики випромiнювання в напрямi розсiювання Брегга. Ви-
промiнювання розглядається, по аналогiї з випромiнюванням в кристалiчному середовищi, як наслiдок
когерентної суми вкладiв двох механизмiв випромiнювання – параметрического рентгенiвського (ПРВ)
та дифрагованого перехiдного (ДПВ). Показано, що вихiд ДПВ iз шарової мiшенi може бiльше нiж
на порядок перевищувати вихiд випромiнювання часток в монокристалiчному радiаторi в аналогiчних
умовах. Показано винекнення эфекта Бормана в ДПВ в перiодичному шаровому середовищi для гео-
метрiї розсiювання Лауе.
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