COMPUTING AND MODELLING SYSTEMS

USE OF A GPGPU MEANS FOR THE DEVELOPMENT OF
SEARCH PROGRAMS OF DEFECTS OF MONOCHROME
HALF-TONE PICTURES

V.A. Dudnik,” V.I. Kudryavtsev, T.M. Sereda, S.A. Us, M.V. Shestakov
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received January 16, 2012)

Application of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures

is described. The description of realization of algorithm of search of images’ defects by the means of technology
CUDA (Compute Unified Device Architecture - the unified hardware-software decision for parallel calculations on
GPU) companies NVIDIA is resulted. It is done the comparison of the temporary characteristics of performance of

images’ updating without application GPU and with use of opportunities of graphic processor GeForce 8800.

PACS: 89.80.4h, 89.70.+c, 01.10.Hx

1. INTRODUCTION

Monochrome images are turned out as a result of
processing the data given by the sensor controls used
for medicine, flaw detection, special cartography and
etc. In this case the image is turned out on an output
of X-ray camera used for the control of temperature
parameters in the chamber of a high pressure press.
Prominent feature of such images is presence of spe-
cific defects which are very bright points.

Fig.1. A fragment of the original image with defects

Such defects are a result from hitting of the absent-
minded quantum of X-ray radiation directly on a ma-
trix of the sensor control. In this case because of
rather bigger size of the camera the voltage on the
anode of a used source of radiation reaches 250 kilo-
volt. It leads to the occurrence of rather big quantity
of quantum of the absent-minded radiation. Within
the analysis of similar images it is necessary the ap-

*Corresponding author. E-mail address: dudnik@mail.ru

plication of the programs-filters removing the similar
defects. It slows down the formation of images essen-
tially (in several times). Acceleration of processing
is necessary for improvement of the analysis of such
images. Basic time when setting up of a window of
visibility is occupied by the filtration of images. It is
necessary for removing of such defects.

2. IMAGE FILTERING

Filters are based on the operation of convolution
[1,3,4]. An operation of calculation of a new value of
the chosen pixel is applied for the image of convolu-
tion. It considers the values of the pixels surrounding
it. For this case the matrix (a kernel of convolution)
by the size 3 x 3 is used:

P(i-1,j-1) P(i,j-1) P(i+1,j-1)
P(i-1,j4+1) | P(i,j+1) | P(i+1,j+1)

If we apply convolution to each pixel of the image
the certain effect is turned out which depends on the
chosen kernel of convolution. Generally there are two
types of the filters on usage of pixels’ values: recur-
sive and non- recursive. In recursive filters the val-
ues calculated on the previous step are used for the
calculation of the subsequent pixels’ values. In non-
recursive filters for calculations it is always used the
original pixels’ values. It is necessary to note that it
is rather difficult to do paralleling of calculation for
the recursive filters. It is impossible for CUDA. That
is why the application of such filters is not considered
here.
3. MEDIAN FILTER

For the filtration of impulsive disturbances (in this
case they are bright points) median filters are usu-
ally used. It is one of a kind of digital filters which

282

ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85).

Series: Nuclear Physics Investigations (60), p.282-284.

is widely used in digital processing of signals and im-
ages for the reduction of the noise level. It is based
on finding of a median which is an average element
of sequence. For this the value of readout inside of
the window of the filter are sorted in ascending order
(decrease). The value which is in the middle of the or-
dered list comes to the output of the filter. The win-
dow moves along filtered signal and calculations are
repeated. In this way very bright values of elements of
the image are eliminated and replaced by the values of
similar magnitudes of brightness of the next elements.

Fig.2. A fragment of the filtered image with
the removed defects

<stdio.h>
<stdio.h>
<assert.h>
<assert.h>

#include
#include
#include
#include
#include <cuda.h>
#include <cuda.h>
int main(void)
int main(void)
{

// pointers
float *a_h,
// pointers
float *a_d,
// allocate

to host memory
*b_h; float *a_h,
to device memory
*b_d; int i; int i;
arrays on host

*b_h; float *a_d,

Use of the graphic accelerators as a fast calculators
allows to accelerate processing of the half-tone pic-
tures which have size more of 10 000 elements. Re-
alization of the programs of images processing in the
form of DLL is recommended. It allows to use them
for the various program’s platforms. The gap in pro-
ductivity between GPU and CPU is sharply reduced
(it is approximately proportional to a quantity of ker-
nels) with the usage of the multinuclear (276 kernels)
processors and increasing of calculations’ complexity
for paralleling processes.

4. PROGRAM REALIZATION OF
ALGORITHM

The algorithm has been realized by the means of
system engineering CUDA in the form of Windows
DLL. It provided a convenient reference to it from
the programs created by the means of various soft-
ware (for example: MS Visual Studio and Borland C
++ Builder). Moving of the data processing image
to the GPU device is done during the reference to
the program of filtration. Processing of the received
data by the means of median filter and returning of
the filtered image to the specified area of computer’s
memory is also carried out [2,5]. Below the fragment
of the code which is carrying out described above op-
eration is resulted:

*b_d;

a_h = (float *)malloc(sizeof(float)*N); a_h = (float
*)malloc(sizeof (float)*N); b_h = (float *)malloc(sizeof(float)=*N);
b_h = (float *)malloc(sizeof (float)*N);

// allocate arrays on device

cudaMalloc((void **) &a_d, sizeof (float)*N); cudaMalloc((void *x*)
&a_d, sizeof (float)*N); cudaMalloc((void **) &b_d, sizeof(float)*N);
cudaMalloc((void **) &b_d, sizeof (float)*N);

// send data from host to device:

a_h to a_d

cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice) ;
cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice) ;
// copy data within device: a_d to b_d

cudaMemcpy (b_d, a_d, sizeof(float)*N, cudaMemcpyDeviceToDevice);
cudaMemcpy (b_d, a_d, sizeof(float)*N, cudaMemcpyDeviceToDevice);

// Delete defects
MedianFilter(b_d);

// retrieve data from device: b_d to b_h
cudaMemcpy (b_h, b_d, sizeof(float)*N, cudaMemcpyDeviceToHost) ;
cudaMemcpy (b_h, b_d, sizeof(float)*N, cudaMemcpyDeviceToHost) ;

283

It is necessary to note that an overhead charge
for the transfer and returning of a file of processing
data, start of the process of processing occupy an es-
sential part of the general operating time of the pro-
gram. That is why an essential gain in time starts
to be shown within the size of processing files of 20
thousand of elements and more. In this case the
same algorithm has been realized with the help of
the base means of parallel processing which is avail-
able within Windows. The comparison analysis of
programs’ work speed has shown that the usage of
modern multinuclear processors with general purpose
allows making a break in speed of processing unim-
pressive (2/5 times in comparison with 10/20 for the
one-nuclear processor). On the other hand it has
been noted by us that the increase in processing speed
rather sharp decreases within increasing the quantity

processors and increasing of calculations’ complexity
for paralleling processes.

References

1. William K. Pratt. Digital Image Processing 3-rd
Edition. On 2011. Wiley-Interscience; 2 edition
(April 1991).

2. Aleksej Berillo. (NVIDIA CUDA) Non
graphic calculation on graphic processors.
http://www.ixbt.com/video3/cuda-1.shtml

3. Kenneth R. Castleman. Digital Image Process-
ing. Prentice Hall; 2nd edition (September 2,
1995).

4. Geoff Dougherty. Digital Image Processing for

of kernels more than seven. (From our point of view
it is due to increasing the overhead charge of Win-
dows system for the management of quantization of
time and switching of the processes, and as due to in- 5
terference of the data in the buffer of the processor).

5. CONCLUSIONS

Medical Applications. Cambridge University
Press; 1 edition (May 11, 2009).

Federico Dal Castello. Advanced System Tech-
nology. STMicroelectronics, Italy Douglas
Miles, The Portland Group: Parallel Ran-

dom Number Generation Using OpenMP,
Use of the graphic accelerators as a fast calculators OpenCL and PGI Accelerator Directives.
allows to accelerate processing of the half-tone pic- http://www.pgroup.com/lit /articles/insider/
tures which have size more of 10 000 elements. Re- v2n2a4.htm
alization of the programs of images processing in the
form of DLL is recommended. It allows to use them 6. Don Breazeal Craig Toepfer: Tuning Ap-
for the various program’s platforms. The gap in pro- plication Performance ~ Using Hardware
Event Counters in the PGPROF Profiler

ductivity between GPU and CPU is sharply reduced
(it is approximately proportional to a quantity of ker-
nels) with the usage of the multinuclear (276 kernels)

http://www.pgroup.com/lit/articles/insider/
v2n4a3.htm en-us/File/ larrabee-"manycore.pdf”

NCIIOJIbBOBAHUVE CPEAOCTB GPGPU OJIAd PASPABOTKU ITPOT'PAMM ITIOMCKA
AEPEKTOB MOHOXPOMHDBIX ITOJIVTOHOBBIX N3OBPAKEHUU

B.A. /Iyonux, B.U. Kydpsaeues, T.M. Cepeda, C.A. Yc, M.B. Illecmaxos

Ormucano npumenenue cpejcts GPGPU mist pazpaborku mporpaMm moncka J1eheKToB MOHOXPOMHBIX HO-
JIYTOHOBBIX u300pazkeHuil. [IpuBesieHO onMcaHue peaiM3alii aJrOPUTMa IIOUCKa JePEeKTOB U300paskKeHuit
cpeacreamu TexnHosiornn CUDA (Compute Unified Device Architecture — yHudunupoBaHHOro nporpaMMHo-
ANIIAPATHOrO pelleHus Jyisi napasuieababix Borauciaennii Ha GPU) komnanuu NVIDIA. IIposeseno cpaBrenue
BPEMEHHBIX XaPAKTEPUCTHUK BBIIOJHEHUS KOPPEKTUPOBKHU m300paxkenunii 6e3 npumenerns GPU u ¢ ucrons-
30BaHUEM BO3MOXKHOCTel rpaduaeckoro mporeccopa GeForce 8800.

BNKOPUCTAHHSA 3ACOBIB GPGPU OJIAd PO3POBKMU ITIPOTPAM IIOIIIYKY
AE®EKTIB MOHOXPOMHUX IIIBTOHOBUX 30BPAXKEHDBb

B.O0. /Iyonix, B.1. Kydpasues, T.M. Cepeda, C.0O. Yc, M.B. Illecmaxos

Omnucano 3acrocyBantst 3acobis GPGPU ist po3pobku mporpam momyky jiedeKTiB MOHOXPOMHUX ITBTO-
HOBUX 300pazkeHb. [IpuBejieHO omuc peaJisallii aJirOpuTMy IOMIYKY JdedeKTiB 300pakeHb 3ac00aMyu TEXHO-
goriit CUDA (Compute Unified Device Architecture — ynicdikoBanoro nporpamMuo-anapaTHoro pilieHms jis
napajiesbaux obunciens Ha GPU) komnanii NVIDIA. IIpseieno NOpiBHAHHS TUMYACOBUX XAPAKTEPUCTUK
BUKOHAHHST KOPEKTYBaHHs 300paxkeHb 6e3 3acrocyBannss GPU i 3 BUKopucTanusaM MOXKJIHBOCTEH TpadidHoro
nporecopa GeForce 8800.

284

