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The convection in a thin layer of liquid (gas) with poorly heat conducting boundaries and with temperature de-

pendent viscosity are considered. The Proctor-Sivashinsky model is examined in order to study both the pattern 
formation and the second-order structural phase transitions as between patterns with translational invariance as well 
as between structures with broken translational invariance but keeping a long-range order. The influence of the tem-
perature dependence of viscosity on the process of pattern formation and structure transformations is discussed. Is 
shown that the temperature dependence of viscosity inhibits structural transition leading to formation of square cells. 
Initiallyquasi-stable structure of convective rolls becomes stable under this condition.  

PACS: 47.27.-i  
 

INTRODUCTION 
Considering the various processes in continuous 

media, we need to take into account the dynamics of 
perturbations with not only different spatial and tempo-
ral scales but also different spatial orientation [1 - 12]. 
The last one is responsible in the common geometric 
sense for symmetry of the spatial structures, which pos-
sess not only short-range but also a long-range order 
[13 - 17]. 

Currently, the problem of most interest is the eluci-
dation of the nature of spatial structures appearance, the 
search for physically transparent mechanisms of these 
processes, and then the formulation of adequate (which 
have clear physical background) mathematical models 
for description of these phenomena.  

The issues of structural transformations, structural 
second-order phase transitions, resulting in the changes 
of the symmetry and some characteristic scales of spa-
tial structures always be of great interest to researchers 
and developers of technologies.  

The models of spatial structure formation were con-
sidered by many researches, which main ideas can be 
found in monographs [18 - 20]. However, of main inter-
est, as it was pointed in [21], are the dynamical models, 
which could be described by differential equations in 
partial derivatives, the mathematical apparatus of the 
analysis of which is well developed. The special atten-
tion should be attended to the models that are capable to 
describe the imperfect quasi-periodic systems, quasi-
crystals (that is characterized by a long-range order and 
symmetry inadmissible in a classical crystallography 
[22, 23]). 

In particular, one of the main problems of radiative 
study of materials is the problem of occurrence of a 
complex system of defects and phase transformations 
caused by irradiation. The authors of [24 - 27] drew 
attention to the collective character of the macro-scale 
processes in such materials. The formation of spatio-
temporal dislocation in homogeneities, dislocation 
channels, the moving Chernov-Luders lines, the dy-
namic self-wave structures (the Danilov-Zuev relaxation 
waves,  the phase transformation front in the disloca-
tion-vacancy ensemble etc.) may be caused namely by 
macroscopic processes. The self-organization of struc-
tural transformation under the action of external factors 
demonstrates the nonlocal properties caused most likely 

by the large scale instabilities. Note that in some cases 
the experimental and calculated data also point to the 
fact that local defects and disorders may be a result of 
imperfection in a large scale packing, occurring in par-
ticular when the system selects the characteristic scaling 
with broken geometric orientation on the structural ele-
ments. The Proctor-Sivashinsky model is found to be 
very attractive [28, 29] for studying the processes of 
pattern formation in systems which possess a preferred 
characteristic spatial scale of interaction between quasi-
particles or elements of future structure. This model was 
developed for description of the convection in a thin 
layer of liquid with poorly conducting heat boundaries. 
Authors of [30] have found the stationary solutions with 
a small number of the spatial modes one of which (con-
vective cells) was steady and the second one (convec-
tive rolls) turned out to be unstable. 

The model [31] with use of the multimode descrip-
tion allowed to find out that at first the quasi-stable 
long-living state (the curved quasi-one-dimensional 
convective rolls) arises, and later after a lapse of time 
(which is considerably greater than the reverse linear 
growth rate of the process), the system transforms to the 
stable state (square convective cells). The detailed 
treatment of the Proctor – Sivashinsky model [32, 33] 
presented below have shown that this structural transi-
tion demonstrates all the characteristics of second order 
phase transition (the continuity of the sum of squared 
mode amplitudes over the spectrum 
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of density of this value and discontinuity of its time de-
rivative /I t∂ ∂ ). 

An important issue discussed in this paper is how the 
temperature dependence of viscosity effects on the 
characteristics of the pattern formation and structural 
transitions. 

1. MODEL DESCRIPTION 
When the Rayleigh number Ra exceeds a critical 

value thrRa , i.e. (1 )thrRa Ra ε= + , the three-dimensional 
convection arises in thin layer with poorly heat conduct-
ing horizontal boundaries (see, for example [2]), which 
can be described by the Proctor-Sivashinsky equation 
[28, 29].This equation determines the dynamics of tem-
perature field in the horizontal plane (x, y):  
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where f is the random function describing the external 
noise, and the quantity ε  determines the convection 
threshold overriding, which is assumed to be suffi-
ciently small ( 0 1ε< < ). The term ( )γ∇ Φ∇Φ  de-
scribes the temperature dependence of viscosity. 

In this case we shall find the solution in the form  
exp( ),j j

j
a ik rεΦ = ∑

r r  (2) 

with | | 1jk =
r

. Renormalizing the time units 2ε∝ , we 
obtain the evolution equation for slow amplitudes aj 
[30]: 
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where interaction coefficients are determined as follows 
=1,jjV  (4) 

( )( ) ( )2 2= (2 3) 1 2 (2 3) 1 2cos .ij i jV k k ϑ− = +
r r

 (5) 

Here ϑ is the angle between vectors ik
r

and jk
r

. 
Let

0
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2 / 3j j jϑ ϑ π+ = + and

02 4 / 3j j jϑ ϑ π+ = + . 
The instability interval in k-space represents a ring 

with average radius equal to unit and the width is order 
of relative above-threshold parameter ε, i.e. much less 
than unity. During the development of the instability, 
the effective growth rate of modes that lies outside of 
the very small neighborhood near the unit circle de-
creases due to the growth of the nonlinear terms and can 
change sign that leads to a narrowing of the spectrum to 
the unit circle in the k-space. Since the purpose of fur-
ther research will be the study of stability of spatial 
structures with characteristic size of order 2 / 2kπ π∝  
and the important characteristic for visualization of 
simulation results will be evidence of these structures, 
so we restrict ourselves by considering some idealized 
model of the phenomenon, assuming that the oscillation 
spectrum is already located on the unit circle in the k-
space. 

2. SIMULATION RESULTS 
Development of perturbations in the system, as 

shown by the numerical analysis of Eq. (5.1) will be as 
follows [12, 31]. Starting from initial fluctuations, the 
modes over a wide range of ϑ  begin grow. The value of 
the quadratic form of the spectrum 2

jj
I a= ∑ can be 

estimated by equating the r.h.s of Eq. (3) to zero and to 
obtain as result a value close to 0.75.  

Convection with temperature independent viscosity. 
It was shown in [31 - 33] that in the absence of tempera-
ture dependence of viscosity and when the number of 
modes is sufficiently large the system delayed the de-
velopment while remaining in a dynamic equilibrium. 
For further development - "crystallization", one of the 
modes must get a portion of the energy which excesses 
some threshold value. That is, in these case, it is neces-
sary a certain level of noise (fluctuations). This can be 

achieved either at finite noise level 0f ≠  or by decreas-
ing the accuracy of calculations that is the same as noted 
in [32]. Similar cases, when the noise can trigger or ac-
celerate instability are reviewed in the book [34]. 

If one of the modes gets the proper amount of en-
ergy, then the process of formation of a simplest con-
vective structure – rolls begins. Note that in the nature, 
the thin clouds also can form the roll structure. The 
value of I in this case tends to unity ( 1I → ). However, 
this state is not stable and then we can see the next 
structural transition: convective rolls are modulated 
along the axis of fluid rotation, and the typical size of 
this modulation phases down. In this transition state, the 
system stays for a sufficiently long time (which slightly 
increases within some limits with increase in the num-
ber of modes), and the value 1.07I ≈  remains constant 
during this time. After a rather long time, ten times 
more than the inverse linear growth rate of the initial 
instability only the one mode “survives” from newly 
formed “side” spectrum, which amplitude is comparable 
with the amplitude of the primary leading mode. In the 
end, the stable convective structure –square cells is gen-
erated, and the quadratic form I  reaches the value of 

1.2I = . 

a 
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Fig. 1. Convective structures: rolls (а)  

and square cells (b) 

 
Fig. 2. The evolution of the derivative dI dt  (in relative 
measuring units) of the integral quadratic form 2

jj
I a= ∑  

Further researches of this process have found the 
following dynamics of quadratic form 2

jj
I a= ∑ with 
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time (see Fig. 2). Exact after the first peak of the deriva-
tive, the metastable structure – a system of convective 
rolls is formed, and up to the moment when the second 
burst have appeared with value of 1I ≈  it has remain 
unchanged. The next burst of /I t∂ ∂  indicates the 
emergence of a secondary metastable structure with a 
new value of 1.07I ≈ . 

After the second burst of the quadratic form deriva-
tive a stable structure of squared convective cells is 
started to build up. Such behavior proves the existence 
of structural-phase transitions in the system. 

Convection with temperature dependent viscosity. 
The term ( )γ ⋅∇ Φ∇Φ appears in Eq. (3) when we take 
into account the temperature dependence of viscosity. 

 
Fig. 3. The evolution of the derivative /I t∂ ∂  for 

| | 0.5γ =  

 
Fig. 4. Temperature field corresponding to the roll 

structure, | | 0.5γ =  

For 0γ >  the gas (this case corresponds to the gas 
convection) flows up to the center of the cell, for 0γ <  
(which corresponds to the movement of the liquid) the 
liquid flows outward and down from the center of the 
cell (see for example [35]). At | | 1γ << , the effect of 
this term on the dynamics of the process is negligible. 
The convection develops in accordance with above-
described scenario. However, when the parameter γ  
approaches the unit value, one further mechanism of 
energy transfer between each triplet of interacting 
modes appears which destroys the previous mechanism 
of mode interaction arising due to vector cubic nonlin-

earity. The consequences of this destruction are almost 
identical for γ of different signs. 

First of all, the rapid growth of the modes spectrum 
at the linear stage of instability forms a quasi-stabile 
structure with rather intricate topology, depending on 
the initial conditions. However, after a short time there 
is a second structural transition (see Fig. 3) as a result of 
which the stableandwell-definedelongated rolls are 
formed, which structure is shown in Fig. 1. The spatial 
distribution of temperature field of the structure is dem-
onstrated in Fig. 4.  

Fig. 5 demonstrates the specific features of structural 
transitions, where one can see the regularity of the func-
tion 2

jj
I a= ∑ , which characterizes the state of the 

system.  

 
Fig. 5. Dynamics of the quadratic form 2

jj
I a= ∑ , 

which characterizes the state of the system at | | 0.5γ =  

Thus, an appreciable temperature dependence of vis-
cosity can lead to formation of stable convective rolls. 
Such convective rollscanbe observed in the thin cloud 
cover (see Fig. 6).  

 
Fig. 6. Formation of convective rolls, extending  

for hundreds of kilometers in the north of Australia  
at the beginning of rainy season 

CONCLUSIONS 
Thus, the temperature dependence of viscosity in-

cluded in the Proctor-Sivashinsky model, which de-
scribes the convection in a thin layer of liquid (or gas) 
with poorly heat conducting boundaries, results in sup-
pression of structural phase transition, which previously 
led to formation of square cell pattern. As in the absence 
of temperature dependent viscosity, the long-livedquasi-
stablestates with a topology that is defined by the 
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boundaries of the system and the initial conditions are 
observed. Some differences between the gas and liquid 
media consist only in small differences in the amplitude 
of the final structure of the convective rolls, without 
changing the nature of structural phase transitions.  

The authors thank prof. A.A. Parkhomenko, provid-
ing us a picture of clouds over Australia. 
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ПРОСТРАНСТВЕННЫЕ СТРУКТУРЫ  
В КОНВЕКТИВНО-НЕУСТОЙЧИВОЙ ВЯЗКОЙ СРЕДЕ 

И.В. Гущин, А.В. Киричок, В.М. Куклин  

Рассмотрены модели описания конвекции в слое жидкости (газа) с плохо проводящими тепло граница-
ми с учетом зависящей от температуры вязкости. Обсуждается корректная модель Проктора-Сивашинского 
в рамках которой можно описать как развитие пространственных структур, так и структурно-фазовые пере-
ходы второго рода между состояниями, обладающими разной топологией с разной степенью нарушений 
трансляционной инвариантности. Обсуждается влияние температурной зависимости вязкости на развитие 
процесса формирования структур и структурных трансформаций.   

 

ПРОСТОРОВІ СТРУКТУРИ  
В КОНВЕКТИВНО-НЕСТІЙКОМУ В'ЯЗКОМУ СЕРЕДОВИЩІ 

І.В. Гущін, О.В. Киричок, В.М. Куклін 

Розглянуто моделі опису конвекції в шарі рідини (газу) з границями, що погано проводять тепло, з ура-
хуванням залежності в'язкості від температури. Обговорюється коректна модель Проктора-Сівашінского в 
рамках якої, можна описати як розвиток просторових структур так і структурно-фазові переходи другого 
роду між станами, що мають різну топологію та різний ступень порушення трансляційної інваріантності. 
Обговорюється вплив температурної залежності в'язкості на розвиток процесу формування структур і струк-
турних трансформацій. 


