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Convection in a thin layer of liquid (gas) with temperature independent viscosity between poorly heat conduct-
ing boundaries is studied within framework of the Proctor-Sivashinsky model. We have shown by numerical simula-
tion of the Proctor-Sivashinsky model that the state with certain topology can be described by the state function,
which is the sum of squared mode amplitudes of spatial temperature spectrum. The transitions between these states
are characterized by splashes in time-derivative of this function and different meta-stable structures, corresponding
to different values of the state function have different visually distinguishable topologies.
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Nonlinear systems with many degrees of freedom
can undergo non equilibrium phase transitions charac-
terized by a large variety of spatial or spatiotemporal
patterns. Transitions and competition among these pat-
terns of different symmetries are fundamental problems,
which have attracted considerable interest in recent dec-
ades. Convection in a horizontal fluid layer subject to a
vertical temperature gradient is very convenient for their
study [1 - 5] due to its relative simplicity and great vari-
ety of observed patterns.

The Proctor-Sivashinsky model [6, 7] is found to be
very attractive for studying the processes of pattern
formation in systems, which possess a preferred charac-
teristic spatial scale of interaction between the elements
of future structure. This model was developed for de-
scription of convection in a thin layer of liquid between
poorly conducting horizontal boundaries. Authors of [8]
have found the stationary solutions with a small humber
of the spatial modes, one of which (convective cells)
was steady and the second one turned out to be unstable
(convective rolls). A particular future of the model is
that it forces a preferred spatial scale of interaction,
leaving the system a chance of selecting the symmetry
during evolution. It was found, that the type of sym-
metry and hence the characteristics of the structure are
determined by the minima of the potential of interaction
between modes lying on a circle in k-space. Even within
the Proctor-Sivashinsky model not all processes and the
phenomena were studied. The detailed analysis of insta-
bility leading to the formation of a metastable structure
(convective rolls) will be presented below. Earlier, it
was found that at first stage of the instability evolution
the metastable long-lived state (the curved quasi-one-
dimensional convective rolls) arises. And later, after a
lapse of time (which is considerably greater than the
reverse linear increment of the process), the system
transforms to the steady state (square convective cells)
[9,10]. The detailed treatment of the Proctor-
Sivashinsky model presented below shows that this
structural transition demonstrates all the characteristics
of the second order phase transition (the continuity of
the sum of squared mode amplitudes over the spectrum
that the same, the continuity of density of this value and
discontinuity of its time derivative. The existence of
preferred scale (the distance between the regular spatial
perturbations) and the possibility to select the type of
symmetry (the regular spatial configuration) motivate
the interest to this physical model, particularly for de-
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scription of processes in solid state physics, where the
characteristic distance between elements of spatial
structures (atoms, molecules) in their condensed state is
almost invariable. The objective of this work is investi-
gation of the mechanisms of pattern formation and
mode competition in convective medium. The nature
and evolution of structural phase transitions between
patterns of different topology are considered.

THE PROCTOR-SIVASHINSKY MODEL

When the Rayleigh number Ra exceeds the critical
value corresponding to the onset of convective flow, the
three-dimensional convection begins in a thin layer of
liquid between poorly conducting horizontal plates
heated from below [2], which can be described by the
Proctor-Sivashinsky equation [6, 7]. This equation de-
termines the dynamics of temperature field in the hori-
zontal plane (x,y):
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where f is the random function describing the external
noise, and the quantity & determines the convection
threshold overriding, which is assumed to be sufficient-
ly small (0<&<1). The term W(®V®) describes the

temperature dependence of viscosity. Further, we as-
sume y =0 for simplicity. In this case we shall find the

solution in the form
D =e) a, exp(ik;F) @)
j

with |IZJ. |=1. Renormalizing the time units o &®, we
obtain the evolution equation for slow amplitudes &;:

N
aj =8, _Zij |am |2 a;, (3)

m=1
where interaction coefficients are determined as follows
V=1, (4)
Vij:(2/3)(1—2(IZiIZ]. )2)=(2/3)(1+2c052 9). (5)

Here 9 is the angle between vectors k. and IZJ. .

The instability interval in k-space represents a ring
with average radius equal to unit and the width is order
of relative above-threshold parameter ¢, i.e. much less
than unity. During the development of the instability,
the effective growth rate of modes that are localized
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outside of the very small neighborhood near the unit
circle will decrease due to the growth of the nonlinear
terms and can change sign which will lead to a narrow-
ing of the spectrum to the unit circle in the k-space.
Since the purpose of further research will be the study
of stability of spatial structures with characteristic size
of order 2z /k oc 27 and the important characteristic
for visualization of simulation results will be evidence
of these structures, so we restrict ourselves by consider-
ing some idealized model of the phenomenon, assuming
that the oscillation spectrum is already located on the
unit circle in the k-space.

SIMULATION RESULTS

It was shown in [9, 11] that in the absence of tem-
perature dependence of viscosity and when the number
of modes is sufficiently large, the system delayed the
development while remaining in a dynamic equilibrium.
Development of perturbations in the system, as shown
by the numerical analysis will be as follows [9]. Starting
from initial fluctuations, the modes over a wide range of
4 begin grow. The value of the quadratic form of the

spectrum | = Zjaf can be estimated to obtain as result

a value close to 0.75. It was shown that in the absence of
temperature dependence of viscosity and when the num-
ber of modes is sufficiently large, the system delayed the
development while remaining in a dynamic equilibrium.
For further development — "crystallization”, one of the
modes must get a portion of the energy, which excesses
some threshold value. That is, in these case, it is neces-
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Fig. 1. Convective structures: rolls (a); square cells (b)

If one of the modes gets the proper amount of ener-
gy, then the process of formation of a simplest convec-
tive structure — rolls begins (Fig. 1,a). Note that in the
nature, the thin clouds also can form the roll structure.
The value of | in this case tends to unity (1 —1). How-
ever, this state is not stable and then we can see the next
structural transition: convective rolls are modulated
along the axis of fluid rotation, and the typical size of
this modulation phases down. In this transition state, the
system stays for a sufficiently long time (which slightly
increases within some limits with increase in the num-
ber of modes), and the value | ~1.07 remains constant
during this time. After a rather long time, ten times
more than the inverse linear growth rate of the initial
instability only the one mode “survives” from newly
formed “side” spectrum, which amplitude is comparable
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with the amplitude of the primary leading mode. In the
end, the stable convective structure — square cells is
generated (Fig. 1,b), and the quadratic form | reaches
the value of | =1.2.

Further researches of this process have found the fol-
lowing dynamics of quadratic form | = zjaj? with time

(Fig. 2). Exactly after the first peak of the derivative, the
metastable structure — a system of convective rolls is
formed, and up to the moment when the second burst
have appeared with value of | =1 it remains un-
changed. The next burst indicates the onset of a second-
ary metastable structure with a new value of | ~1.07 .

After the second burst of the quadratic form deriva-
tive, a stable structure of squared convective cells is
started to build up. Such behavior proves the existence
of structural-phase transitions in the system.
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Fig. 2. The evolution of the derivative dl/dt (in relative
units) of the integral quadratic form | = Zjaf

Generally speaking, the characteristic times of relax-
ation processes during evolution of the system to more
equilibrium state are determined as usual by the differ-
ence of the state function values before the transition
and after it. The greater this difference, the faster the
transition from one state to another. It is important to
keep in mind that the sequence of state transitions is
determined by the characteristic times of instabilities
(which play the role of relaxation processes) that pro-
vide a cascade evolution of the system to the most equi-
librium state. Initially, the fastest relaxation processes
take place that associated with large difference of the
state function values corresponding to different equilib-
rium states.

Let us verify that in this case all the phenomena oc-
cur in the same order and within the framework of the
foregoing scenario. The numerical analysis of the model
allows confirming these considerations.

It can be seen that the times of state formation z, are
inversely proportional to | :ZAZ. the difference be-

tween the values 10 = (3" A?){ after n-th structural
phase transition | ) — (Z A? )t and before it
|(*)I= (Z A2 )(*),
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It follows from this that
/7, = Al, [ Al,. (7

253



Thus, we have shown by numerical simulation of the 2. S. Chandrasekhar. Hydrodynamic and hydromagnet-

Proctor-Sivashinsky model that the state with certain to- ic stability. Dover Publication Inc.: New York, 1970,
pology can be described by the state function, which is the 704 p.
sum of squared mode amplitudes. The transitions between 3. A.V. Getling. Structures in heat convection // Usp.
these states are characterized by splashes in time-derivative Fiz. Nauk. 1991, v. 11, p. 1-80.
of this function and different meta-stable structures, corre- 4. M.C. Cross, P.C. Hohenberg. Pattern formation out-
sponding to different values of the state function have dif- side of equilibrium // Reviews of modern physics.
ferent visually distinguishable topologies. 1993, v. 65, Ne 3, p. 851.
The fact that the metastable states are characterized 5. E. Bodenschatz et al. Transitions between patterns in
by specific values of the state function was highlighted thermal convection // Physical review letters. 1991,
in our earlier works [11 - 13]. The numerical study, pre- V. 67, Ne 22, p. 3078.
sented in this paper, confirmed two observations: 6. J. Chapman, M.R.E. Proctor. Nonlinear Rayleigh-
1) the difference between the values of the state Benard convection between poorly conducting bounda-
function before and after the structural phase transition ries // J. Fluid Mech. 1980, Ne 101, p. 759-765.
is inversely proportional to the characteristic time of the 7. V. Gertsberg, G.E. Sivashinsky. Large cells in non-
corresponding structural-phase transition; linear Rayleigh-Benard convection // Prog. Theor.
2) the evolution of the planar convective structure Phys. 1981, Ne 66, p. 1219-1229.
under consideration demonstrates all the features of a 8. B.A. Malomed, A.A. Nepomniachtchi, M.P. Tribel'skii.
relaxation process, i.e. the fast structural-phase transi- Two-dimensional quasi-periodic  structures in-
tion is succeeded by more slow ones. Thus, a fuller pic- nonequilibrium systems // Zh. Eksp. Teor. Fiz. 1989,
ture of the process becomes clear. v. 96, p. 684-700.
9. A.V. Kirichok, V.M. Kuklin. Allocated Imperfec-
CONCLUSIONS tions of Developed Convective Structures // Physics
The special feature of the Proctor-Sivashinsky mod- and Chemistry of the Earth Part A. 1999, Ne6,
el with temperature independent viscosity is the exist- p. 533-538.
ence of three possible metastable states, which corre-  10.1.v. Gushchin, A.V. Kirichok, V.M. Kuklin. Pattern
spond to patterns of different symmetries. The times of formation in convective media (review) // Journal of
structural transitions between these metastable states are Kharkiv National University. Series «Nuclei, Parti-
much less than the times of their existence. Each state cles, Fields». 2013, Ne 1040, Issue 1/57, p. 4-27.
has a definite topology and can be characterized by def- 11 gV, Belkin, 1.V. Gushchin, A.V. Kirichok, V.M. Kuklin.
inite steady value of the state function. The metastable Structural transitions in the model of Proctor-
states are destroyEd with time for the instabilities, the Sivaghinsky // Problems of Atomic Science and Tech-
growth rate of which can be evaluated from the ampli- nology. Series «Plasma Electronics and New Methods
tude of splashes of time-derivative of the state function. of Acceleration». 2010, Ne 4, p. 296-298.
It is shown, that the characteristic times of the instabili- 12 1./, Gushchin, A.V. Kirichok, V.M. Kuklin. Pattern
ties, which destroy the previous state and form a new formation in unstable viscous convective medium //
one are inversely proportional to the difference between Problems of Atomic Science and Technology. Series
the values of the state function before and after the «Plasma Electronics and New Methods of Accelera-
structural phase transition. In addition, we show that the tion» (8). 2013, Ne 4, p. 251-256.
faster relaxation processes, i.e. structural phase transi- 13 1.V. Gushchin, E.V. Belkin. Modeling of noise influ-
tions take priority over more slow ones. ence on the formation of spatial structures in the Proc-
REFERENCES tor-Sivash.insky model_l/ Contemporary_ problgms of
o ) o mathematics, mechanics and computing sciences.
1. F.H. Busse, N. Riahi. Nonlinear convection in a lay- V.N. Karazin Kharkiv National University, 2011, p.
er with nearly insulating boundaries // J. Fluid 226-231.
Mech. 1980, v. 96, p. 243. Article received 12.05.2015
CTPYKTYPHO-®A3OBBIE TEPEXO/IBI 1 ®YHKIHUSA COCTOSAHAA B HECTABUJIbHOM KOHBEKTUBHOM
CPEJIE

U.B. I'vwyun, A.B. Kupuuok, B.M. Kyxnun
KoHBekIust B TOHKOM ClI0€ KHAKOCTH (Ta3za) MEXIY IJI0X0 MPOBOIAIIMMH TEIUIO IIOBEPXHOCTSAMHU PAacCMOTPEHA
B YCIIOBHUSX MPUMEHUMOCTH Mojenu [Ipoxropa-CHBaIIMHCKOTO TPH OTCYTCTBHE 3aBHCHMOCTH BS3KOCTH OT TEMIIE-
patypbl. C IOMOIIBIO YUCICHHOTO aHAIM3a IMOKa3aHO, YTO KaXKI0E€ COCTOSHHE MOXKET OBITH ONMHCAaHO C TOMOIIBIO
(YHKINU COCTOSHUS, KOTOpas paBHAa CyMMe KBaJpaTOB MO/ CIIEKTpa MPOCTPAHCTBEHHOTO PACIpeeICHHUS TeMIIepa-
Typbl Ha OBepXHOCTH. [lepexo/ MeX Iy COCTOSIHUSIMH XapaKTepU3yeTcss N3MEHEHHEM IIPOU3BOJHOM 110 BPEMEHHU OT
9Toi QyHKIMHU. Paznuune Mexny MeTacTaOMIBHBIME COCTOSIHUSIMH, KOTOPBIE OTIIMYAIOTCS TOIIOJIOTHEH, ONpeaes-
€Tcsl pa3HBIMH 3HAYCHHUAMH (DYHKIIUH COCTOSHUSL.
CTPYKTYPHO-®A30BI IEPEXO/H TA ®YHKIIi CTAHY B HECTABLJILHOMY KOHBEKTHUBHOMY
CEPEJJOBMILII
LB. I'vwun, O.B. Kupuuok, B.M. Kyknin
KonBek1io B TOHKOMY Iapi piHMU (Ta3y) MK MOBEPXHSMH, 110 HEIOCTATHHO JOOPE MPOBOIATH TEILIO, PO3T-
JITHYTO B YMOBax mpuaaTHoOCTI Moaeni [Ipokropa-CiBamIMHCHKOTO 32 BiICYTHICTIO 3aJI€KHOCTI B’SI3KOCTI Bifl TeM-
nepaTypu. 3 BUKOPHUCTAHHSAM YHCIOBOI'O MOJEIIOBAHHS ITOKA3aHO, IO KOXKEH CTaH MoXKe OyTH IpeACTaBICHHUI 3a
JIOTIOMOTOI0 (PYHKIIi1 CTaHy, IO TOPIBHIOE CyMi KBaApaTiB MOJ POCTOPOBOTO CIIEKTpa TEMIIEPATypH Ha IOBEPXHI.
[Tepexin Mik cTaHAMH XapaKTePU3YEThCS 3HAUCHHSM TTOX1IHOT 32 yacoM Bia QyHKii ctaHiB. Pi3HUI Mixk MeTacTa-
OUTBHUMU CTaHAMH, K1 BiIPI3HAIOTHCS TONOJOTIEI0, BU3HAYAETHCS PI3HUMHU 3HAYCHHAMHM (YHKIIIT CTaHy.
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