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The problem of stochastic deflection of high-energy charged particles was considered on the basis of analytical

calculation and numerical simulation. It was shown that with increasing energy of charged particles the maximal

deflection angle, achievable with a help of stochastic deflection mechanism decreases as E−1/4, while the optimal

radius of crystal curvature, which corresponds to this maximal deflection angle, increases as E5/4.
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1. INTRODUCTION

If a high-energy charged particle penetrates
through a crystal having a small angle ψ between its
momentum and one of the main crystallographic axes
(let us call this axis as z-axis), correlations between
successive collisions of the particle with neighboring
atoms may occur. This happens when the angle ψ is
of the order of the critical angle of axial channeling
ψc [1]. In this case motion of the particle is defined
by the continuous potential of atomic strings. In this
potential particle motion in the plane (x, y) that is
orthogonal to the z-axis can be finite (axial channel-
ing) or infinite (above-barrier motion). If the crystal
is bent both axial channeling and above-barrier mo-
tion may cause a deflection of the direction of motion
of the particle [2]. The main advantage of such de-
flection of high-energy charged particle in comparison
with deflection in the field of electromagnet is com-
pact sizes of the bent crystal. Strong intra-crystalline
field provides an opportunity to deflect charged par-
ticles on angles that far exceed ψc by a crystal with
a thickness of several centimeters.

The mechanism of charged particle deflection in
the field of bent atomic strings, that was proposed
for above-barrier particles in [2], was later called as
stochastic deflection mechanism. Such term was used
due to a resemblance of particle motion in the (x, y)
plane during this regime of motion in the crystal with
stochastic motion [3]. The main advantage of this
mechanism over two other deflection mechanisms –
planar channeling in a bent crystal [4, 5] and vol-
ume reflection from bent atomic planes [6] – is that
stochastic deflection allows to deflect not only posi-

tively but also negatively charged particles on angles
that far exceed ψc.

The possibility of negatively charged particle
beam deflection by means of a bent crystal was exper-
imentally confirmed in [7]. Later, in [8] the analysis
of the influence of incoherent scattering on atomic
thermal vibrations and electrons on the efficiency of
stochastic deflection of high-energy negative particle
beams in bent crystals was carried out by an example
of 150 GeV/c π−-mesons. It was shown that incoher-
ent scattering leads to the existence of a maximum
in the dependence of deflection efficiency from the ra-
dius of curvature of the crystal. The radius of curva-
ture that corresponds to the maximum in deflection
efficiency was called as optimal radius of curvature.
In this article we consider the dependence of the opti-
mal radius of curvature from the energy of negatively
charged particles.

2. MOTION OF NEGATIVELY CHARGED
PARTICLES IN A FIELD OF BENT

ATOMIC STRINGS

As it was written above, if for a high-energy
charged particle ψ ∼ ψc, crystal potential could be
integrated over the z-axis and written as a sum of
potentials of atomic strings, that are parallel to the
z-axis. To obtain the potential of an atomic string
let us take atomic potential in the Doyle-Turner ap-
proximation [9]. In this approximation the potential
energy of a particle with a charge, that equals to the
charge of an electron, in the field of an atomic string
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could be written as

Ustr(ρ) = −8π2~2

med

4∑
k=1

αk

βk +B
e
− 4π2ρ2

βk+B , (1)

where me is an electron mass, d is the distance be-
tween neighboring atoms in the atomic string, αk

and βk are coefficients found in [9] for a large num-
ber of elements, B = 8π2⟨r

T
2⟩ and r

T
is the rms

atomic thermal vibration amplitude in one direction
(r

T
≈ 0.075 Å for Si at 293K), ρ is the distance from

the atomic string.
Since Ustr(ρ) in Eq. (1) decreases rapidly with in-

creasing distance from the atomic string, only a lim-
ited number of neighboring atomic strings determine
the value of the potential at the selected point inside
the crystal. This fact gives us a possibility to sum the

potentials of atomic strings analytically and find the
potential energy of a high-energy charged particle in
the crystal as

U (ρ⃗ ) =
∞∑

n=−∞
Ustr (ρ⃗− ρ⃗n) , (2)

if the charged particle is far from the edge of the
crystal1. In Eq. (2) vector ρ⃗ corresponds to the co-
ordinates of the charged particle in the (x, y) plane
and vector ρ⃗n corresponds to the coordinates of the
n-th atomic string in this plane.

If a high-energy particle with a charge, that equals
to the charge of an electron, moves in a silicon crys-
tal and the z-axis is parallel to the ⟨110⟩ crystal axis,
summation over atomic strings in Eq. (2) gives
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where dx = d = a/
√
2, dy = a, a is the lat-

tice constant which for Si is about 5.4307 Å,

θ3(u, q) =
∞∑

n=−∞
qn

2

e2nui is the Jacobi theta func-

tion of the third kind [10], i2 = −1.

Fig.1. Orientation of the bent crystal with respect
to the initial direction of motion of a high-energy
charged particle.

Let us now consider the motion of a high-energy
charged particle with a charge, that equals to the
charge of an electron, in a bent silicon crystal. Let
the crystal be oriented along the ⟨110⟩ axis with
respect to the initial direction of motion of the par-
ticle, the (x, z) plane is the plane of curvature and
it coincides with the (001) crystallographic plane
(see Fig. 1). If the thickness of the crystal is much
smaller than the radius of curvature, the trajectory
of the particle in the crystal can be found by solving
equations of motion in the plane (x′, y′) which inside
the crystal is orthogonal to the current direction of
the ⟨110⟩ axis and coincides with (x, y) plane when

particle impinges on the crysral [2, 11]:

ẍ′ = −c
2

E

∂

∂x′
U (x′, y′)− v2z

R
+ fi,x

ÿ′ = −c
2

E

∂

∂y′
U (x′, y′) + fi,y, (4)

where E and v are the energy and velocity of the par-
ticle, respectively, fi,x and fi,y are summands that
correspond to incoherent scattering (scattering on
atomic thermal vibrations, electrons, etc.).

In [12] it was shown that without an account of
incoherent scattering stochastic deflection of particle
beam takes place if

ψ2 =
lL

R2
≤ ψ2

m, (5)

where l is the mean free path of the particle between
consequent collisions with atomic strings, L is the
path traversed by the particle in the crystal, R is the
radius of curvature of the crystal, ψ2 is the value of
a square of the angle between the particle momen-
tum and current direction of the crystal axis, aver-
aged over the beam, ψm is the maximal value of ψ
for which particle take part in stochastic deflection
(ψm ∼ ψc). Experiments aimed at testing the possi-
bility of using the stochastic mechanism for deflecting
the direction of motion of high-energy charged parti-
cles have shown that this criterion works well for pos-
itively charged particles. At the same time, for neg-
atively charged particles it is important to take into
account incoherent scattering, since in the stochastic
deflection regime they approach the atomic strings
at closer distances than positively charged particles.

1the term ”far” here means distances that significantly exceed the lattice constant.
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The influence of incoherent scattering on stochastic
deflection of high-energy charged particles was taken
into account in [8]. It was shown that condition (5)
with account of incoherent scattering could be writ-
ten as

ψ2 =
lL

R2
+ ψ2

i ≤ ψ2
m, (6)

where ψ2
i is the mean square angle of incoherent scat-

tering. Conditions (5) and (6) were obtained for a
simple approximation of the potential of an atomic
string Ustr(ρ) = U0 (a/ρ)

2
, where U0 and a are con-

stants.

In an amorphous medium ψ2
i ∝ L/E2 [13], thus

by analogy we assume that in Si crystal ψ2
i = ζL/E2.

From Eq. (6) one could obtain the value of the bend-
ing angle of the crystal αst, up to which particles will
be deflected by a bent crystal, in the next form:

αst =
ψ2
m

l/R+ ζR/E2
. (7)

From Eq. (7) we see that if ζ ̸= 0 the dependence of
αst from the radius of curvature of the crystal has a
maximum at some radius of curvature, that in [8] was
denoted as the optimal radius of curvature Ropt. Let
us now consider the dependence of the optimal radius
of curvature from the energy of high-energy charged
particles.

From Eq. (7) we can obtain the value of the op-
timal radius of curvature as Ropt = E

√
l/ζ. In the

approximation Ustr(ρ) = U0

(
a
ρ

)2

one could obtain

that l ≈ 1
4nda

√
E
U0

, where n is the concentration of

atoms in the crystal. Thus Ropt ∝ E5/4. Because of
ψm ∼ ψc ∝ E−1/2, we can obtain the dependence of
the maximal value of αst from the energy of particles
as

max(αst) =
ψ2
m

l/Ropt + ζRopt/E2
∝ E−1/4. (8)

The dependence (8) was obtained for a simple
approximation of atomic string potential Ustr(ρ) =

U0

(
a
ρ

)2

. For consideration of the dependence of

the optimal radius of curvature and the maximal de-
flection angle from the energy of particles we car-
ried out a numerical simulation of π−-mesons motion
in more realistic potential (3) of Si atomic strings
that are parallel to the axis ⟨110⟩. The simulation
code was the same as in Refs. [14, 15]. The code
solves the equation of motion in the field of contin-
uous atomic string potential through numerical in-
tegration of equations of motion (4). It takes into
account the incoherent scattering on thermal vibra-
tions of atoms and scattering on electrons. Other
kinds of incoherent scattering were not taken into ac-
count considering the small crystal thickness.
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Fig.2. The dependence of the angle of the crystal
bend αe at which the number of π−-mesons in the
stochastic deflection regime decreases by a factor of
e on the radius of curvature R.

To analyze the dependence of efficiency of stochas-
tic deflection on the radius of curvature of the crys-
tal we shown in Fig. 2 the dependence of the angle
of the crystal bend αe, at which the number of π−-
mesons in the stochastic deflection regime decreases
by a factor of e, on the radius of curvature. Before
impinging on the crystal the beam of π−-mesons had
no angular divergence. To obtain Fig. 2 we assumed
that ψm = 1.5ψc, because the angular acceptance of
stochastic deflection for negatively charged particles
is ≈ 1.5ψc (see Fig. 2 in [8] and a description of it in
the text). Each of the five curves in Fig. 2 was built
from two hundred of points and each of these points is
a result of simulation of 5×104 π−-mesons motion in
the bent crystal with the radius of curvature R. From
simulation for each of two hundred of values of R in
the range from zero to 100 m we obtained the length
at which the number of π−-mesons in the stochastic
deflection regime decreases by a factor of e. Then
we divided this length by the radius of curvature and
thus obtained αe. Each of the five curves corresponds
to different energy of particles. Gray solid curve cor-
responds to π−-mesons with an energy of 100 GeV,
red dashed curve – 200 GeV, black dotted curve – 300
GeV, green dash-dotted curve – 400 GeV and blue
dash-double-dotted curve – 500 GeV. From Fig. 2 we
see that with increasing particle energy the value of
the optimal radius of curvature, which corresponds to
a maximum of αe, increases while the value of maxi-
mal αe decreases.

For a better understanding of the dependence of
the optimal radius of curvature on the energy of π−-
mesons in the beam we plotted in Fig. 3 the val-
ues of Ropt, obtained from the simulation. In ad-
dition to the points that correspond to the maxima
of the curves shown in Fig. 2, in Fig. 3 the values
of the optimal radius of curvature for higher ener-
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gies are also shown. Solid curve in Fig. 3 is a fit of
points, obtained from the simulation, by the func-
tion fR(E) = kRE

5/4. The best agreement with ob-
tained points is achieved with kR ≈ 130 [m/TeV]. In
Fig. 3 we see that the dependence E5/4 successfully
describes the dependence of the optimal radius of cur-
vature from the energy of particles in the beam not
only for a simple potential of atomic string but also
for the Doyle-Turner potential (1).
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Fig.3. The dependence of the optimal radius of
curvature on the particle energy.

In the theory of channeling the critical angle of
axial channeling ψc is one of the main parameters.
This parameter, for example, determines the angular
acceptance of all three main beam deflection mech-
anisms: planar channeling, volume reflection and
stochastic deflection. In the case of the volume re-
flection the deflection angle is proportional to ψc [6]
and thus decreases with particle energy increase as
E−1/2. In Fig. 2 we saw that with increasing particle
energy αe decreases. This therefore means that the
maximal deflection angle achievable with stochastic
deflection also decreases with increasing particle en-
ergy. Let us however consider the dependence of the
ratio of αe to the critical angle of axial channeling
on the particle energy. This dependence is shown in
Fig. 4. Points correspond to values of αe obtained
from the simulation. As it was written above, for the
simple approximation of atomic string potential we
obtained the dependence of max(αst) on the particle
energy as E−1/4, thus max(αst)/ψc ∝ E1/4. That is
why for fitting the data shown in Fig. 4 we used the
function fα(E) = kαE

1/4+C. The additive constant
C corresponds to the fact that αe shows the deflection
angle of the crystal at which the number of particle
in the stochastic deflection regime decreases by factor
of e, but if the beam impinge on the crystal paral-
lel to the crystal axis, most of particles take part in
stochastic deflection at least until the ratio of crystal
thickness to the radius of curvature is less than ψc.
The solid curve shows the best fit of data by the func-

tion fα(E). This fit corresponds to kα ≈ 3.75[TeV−1]
and C ≈ 1.

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1  1.2

α

e

/
ψ

c

E [TeV]

Fig.4. The dependence of the ratio of αe to the
critical angle of axial channeling on the particle
energy.

In Fig. 4 we see that the dependence E1/4 suc-
cessfully describes the dependence of αe (and thus
the maximal deflection angle) from the energy of par-
ticles in the beam not only for a simple potential of
atomic string but also for the Doyle-Turner potential
(1). This fact shows that, for example, in comparison
with the volume reflection the deflection angle in the
case of stochastic deflection increases as E1/4 with
particle energy increase.

3. CONCLUSIONS

The research made in the present work allowed to
analyze the dependence of the optimal radius of cur-
vature and maximal deflection angle that is achiev-
able with a help of the stochastic deflection mecha-
nism on the energy of charged particles. The analysis
was done in the example of π−-mesons and it shown
that with increasing particle energy the ratio of the
maximal deflection angle to the critical angle of axial
channeling increases as E1/4 while the optimal radius
of curvature increases as E5/4.
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Î ÇÀÂÈÑÈÌÎÑÒÈ ÝÔÔÅÊÒÈÂÍÎÑÒÈ ÑÒÎÕÀÑÒÈ×ÅÑÊÎÃÎ ÌÅÕÀÍÈÇÌÀ
ÎÒÊËÎÍÅÍÈß ÏÓ×ÊÀ ÇÀÐßÆÅÍÍÛÕ ×ÀÑÒÈÖ ÈÇÎÃÍÓÒÛÌ ÊÐÈÑÒÀËËÎÌ

ÎÒ ÝÍÅÐÃÈÈ ×ÀÑÒÈÖ

È.Â.Êèðèëëèí

Ïðè ïîìîùè àíàëèòè÷åñêèõ ðàñ÷¼òîâ è ÷èñëåííîãî ìîäåëèðîâàíèÿ áûëà ðàññìîòðåíà çàäà÷à î ñòî-

õàñòè÷åñêîì îòêëîíåíèè âûñîêîýíåðãåòè÷åñêèõ çàðÿæåííûõ ÷àñòèö èçîãíóòûì êðèñòàëëîì. Áûëî ïî-

êàçàíî, ÷òî ñ ðîñòîì ýíåðãèè çàðÿæåííûõ ÷àñòèö ìàêñèìàëüíûé óãîë îòêëîíåíèÿ, äîñòèæèìûé ïðè

èñïîëüçîâàíèè ñòîõàñòè÷åñêîãî ìåõàíèçìà îòêëîíåíèÿ, óìåíüøàåòñÿ êàê E−1/4, â òî âðåìÿ êàê îï-

òèìàëüíûé ðàäèóñ êðèâèçíû êðèñòàëëà, ñîîòâåòñòâóþùèé ýòîìó ìàêñèìàëüíîìó óãëó îòêëîíåíèÿ,

ðàñò¼ò êàê E5/4.

ÏÐÎ ÇÀËÅÆÍIÑÒÜ ÅÔÅÊÒÈÂÍÎÑÒI ÑÒÎÕÀÑÒÈ×ÍÎÃÎ ÌÅÕÀÍIÇÌÓ
ÂIÄÕÈËÅÍÍß ÏÓ×ÊÀ ÇÀÐßÄÆÅÍÈÕ ×ÀÑÒÈÍÎÊ ÇIÃÍÓÒÈÌ ÊÐÈÑÒÀËÎÌ

ÂIÄ ÅÍÅÐÃI� ×ÀÑÒÈÍÎÊ

I.Â.Êèðèëëií

Çà äîïîìîãîþ àíàëiòè÷íèõ ðîçðàõóíêiâ i ÷èñëîâîãî ìîäåëþâàííÿ áóëà ðîçãëÿíóòà çàäà÷à ïðî ñòîõà-

ñòè÷íå âiäõèëåííÿ âèñîêîåíåðãåòè÷íèõ çàðÿäæåíèõ ÷àñòèíîê çiãíóòèì êðèñòàëîì. Áóëî ïîêàçàíî, ùî

ç ðîñòîì åíåðãi¨ çàðÿäæåíèõ ÷àñòèíîê ìàêñèìàëüíèé êóò âiäõèëåííÿ, ÿêèé ¹ äîñÿæíèì ïðè âèêîðè-

ñòàííi ñòîõàñòè÷íîãî ìåõàíiçìó âiäõèëåííÿ, çìåíøó¹òüñÿ ÿê E−1/4, â òîé ÷àñ ÿê îïòèìàëüíèé ðàäióñ

âèêðèâëåííÿ êðèñòàëó, ùî âiäïîâiäà¹ öüîìó ìàêñèìàëüíîìó êóòó âiäõèëåííÿ, çðîñòà¹ ÿê E5/4.
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