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At ballistic bunching of an electron beam the transverse distribution of space-charge field varies along a bunch 

greatly. It can lead to emittance growth unless to provide its compensation. To study this problem, a multislice mod-

el of a bunch of relativistic charged particles that needs no smallness of energy spread between slices are developed. 

This removes the limit on the value of the RF field that modulates the slices by velocity before their injection into a 

drift space. The longitudinal dynamics of each slice is determined by its interaction with the field of the entire bunch 

averaged over the slice. Transverse beam characteristics are found from a differential equation for root-mean-square 

envelope of a beam. 
PACS: 29.20.Ej, 84.40.-x  
 

INTRODUCTION 

One of the key problems of the modern rf electron 

accelerators is the bunching of intense beams into a se-

quence of ultra short bunches (from a few picoseconds 

to hundred of femtoseconds) with an rms normalized 

emittance close to the thermal level. For now the laser 

driven photoelectron emission is the most promising 

way of obtaining short (picoseconds) electronic bunches 

with charge about of 1 nC and a normalized transverse 

emittance less than 1 mmmrad. This method is used in 

a number of accelerators in XFEL [1 - 3].  

However, a short photocathode lifetime [4], and the 

need for ultra high vacuum (up to 10
-11

 Torr) as well 

high average power of a laser makes this technology 

also rather complicated for a small facility. Replacement 

of a photocathode by thermionic one will further reduce 

costs and make the electron gun even easier to operate. 

Therefore, development of bunching methods of 

electron beams obtained from thermo-emission sources, 

that are distinguished by a long life time, up to 20000 or 

more hours [5], is still relevant. Opportunities of ballis-

tic bunching of beams emitted from the DC thermolec-

tronic gun and its subsequent longitudinal compression 

by magnetic compressors is demonstrated in the rf linac 

for the SACLA X-ray FEL (SPring-8 Angstrom Com-

pact Free Electronic LAser, Japan) [6]. 

In the design of a rf accelerator for a combined pho-

tonic source of THz radiation based on a free-electron 

laser and Compton scattering [7, 8], it was shown that 

bunches with the charge of about 1 nC and the initial 

duration of 1 ns can be compressed longitudinally to 

several picoseconds under ballistic bunching. However, 

the Compton radiation source requires beams with an 

rms normalized emittance of about 1 mmmrad in order 

of magnitude. Therefore, a bunching method should 

ensure both efficiency of bunch compression and to 

save the normalized beam emittance, or as much as 

possible slow down its growth. 

Among the factors limiting achievement of the mi-

nimal bunch length is the initial energy spread of the 

beam and space charge fields. The most important rea-

son that leads to growth of the effective transverse emit-

tance іs transverse space-charge (SC) forces linear on 

radius but inhomogeneous along a bunch.  

In the paper [9], the first time the mechanism of the 

transverse normalized emittance growth caused by the 

SC field in short bunches was analyzed as well the me-

thod that compensates it proposed. 

The authors of Ref. [10] for calculating influence of 

the SC field on dynamics of electron bunches accele-

rated in the LCLS (Linac Coherent Light Source) photo-

injector developed the multi-slice model of an electron 

bunch. This approach is based on an assumption that 

each bunch is represented as a homogeneous cylinder 

whose length and radius can self-consistently change, 

while maintaining an uniform charge distribution within 

the bunch. By slicing the bunch in an array of thin cy-

linders, each one subject to the local field, one obtains 

also the energy spread and the emittance degradation 

due to phase correlation of RF and SC effects. But this 

approach does not provide to bunch a beam essentially. 

However, during the ballistic bunching, the SC field of 

the beam changes substantially in the drift space, that 

can lead to emittance growth, unless the special method 

of compensation is used. 

In our paper, in the multislice approach we consider 

possibilities both ununiform charge density along a 

bunch and its deep compression under ballistic bunch-

ing. The longitudinal dynamics of each slice is deter-

mined by its interaction with the SC field of the entire 

bunch averaged over the slice. Transverse beam charac-

teristics are found from a differential equation for root-

mean-square envelope of the beam. 

1. MULTISLICE MODEL 

1.1. TRANSVERSE DYNAMICS EQUATIONS  

The first equations of root-mean-square (rms) trans-

verse sizes of a continuous charged beam in a channel 

with periodic focusing were derived by Kapchinskiy 

and Vladimirskiy [11]. Later the equations were genera-

lized by Lapostole [12] and Sacherer [13]. This ap-

proach was also presented in detail in the article [14], on 

which we will reference at deriving correspond equa-

tions further.  

We consider an axial symmetric bunch as a se-

quence of very thin slices. Each slice with current index 

(i) is characterized by next physical values: 

a) an rms radius, 
 i

r
 ,  
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с) a relativistic factor averaged over a slice, 
 i

 , 

where r and r d r d t  are the radial coordinate and 

velocity. It is supposed that energy spread within each 

bunch is very small that it can be neglected.  

Taking into account Eqs. (1) and (2), one can derive 

the differential equation for the rms radius of a slice in 

the paraxial approximation  
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where  0 ,
z

B z  is the longitudinal magnetic field on the 

axis of a focusing solenoid,  S C

r
F  is the radial compo-

nent of the SC force.  

1.2. SPACE CHARGE FORCE 

Lorenz transverse force acting on the i
th

 slice having 

the longitudinal coordinate zi is given as  
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where  i

z
v  is the average velocity of the i

th
 slice; 

 
 , ,

j

E r z t ,  
 , ,

j

B r z t  is the electric and magnetic 

space charge fields generated by the j
th

 slice.  

In order to find the fields from the j
th

 slice, it is con-

venient to go into the rest frame of its slice 
j

K   (as it is 

shown in Fig. 1) and then, finding the space charge elec-

tric field  
 ,

j

E r z

   , to came back to the laboratory 

system again:  
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Fig. 1. The rest frame of the j

th
 slice, 

j
K 

 

1.3. TRANSVERSE SPACE CHARGE FIELD  

The radial component of the SC field in the laborato-

ry system can be obtained from the Gauss law in the 

paraxial approximation, as  

  
 

 
0

0 , ,
, , 0 , ,

2 2
r z

z tr r
E r z t E z t

z
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, (6) 

where  0 , ,z t  is the charge density on a beam axis.  

Then we find the SC electric field on the beam axis 

by going to the rest frame of the j
th

 slice, 
j

K  . Consider 

the longitudinal electric field of a thin charged disc on 

its axis, as it is shown in Fig. 2.  

 

Fig. 2. The longitudinal SC electric field  

of the j
the

 disc on the axis in the rest frame, 
j

K   

According to the Coulomb law, as it shown in Fig. 2, 

the electric field of the charged disc is given as  
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 (7) 

where  0 ,
j

z    is the charge density on beam axis in 

the 
j

K   frame.  

Performing the Lorentz transformation in Eq. (7), 

the longitudinal electric field on the beam axis in the 

laboratory frame is obtained as superposition of the 

fields from the each slice. Then using Eqs. (6) and (5) 

we find the transverse component of the SC field acting 

on the i
th 

 slice in the paraxial approximation, as 
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1.4. EQUATIONS OF LONGITUDINAL MOTION 

In order to close the self-consistent system we have 

to derive the equation of longitudinal dynamics of slices  

 

 
 
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i

S Cz

z i

d p
e E z t

d t
 , (9) 

where 
 i

z
p  is the longitudinal momentum of the i

th
 

slice, 
 

 ,
S C

z i
E z t  is the longitudinal component of the 

SC electric field averaged over the i
th

 slice as  

 
 
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1
, , , ,

i
r
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By transiting into the rest frame of the j
th

 slice 
j

K   

and solving Poisson’s equation by the method given in 
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Ref. [16] (see the chapter 12) we can express the SC 

potential through the Fourier integral 

     0 0

0

, , , , ,
j

k z z

j j j j
r r z z e J k r B r z k d k
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 (11) 

where  0
, ,

j j
B r z k   is the unknown function deter-

mined through the boundary conditions for the electric 

field at 
j

z z   
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Substituting the last into Eq.(11), and differencing 

per z  , we find the longitudinal component of SC elec-

tric field of the j
th

 slice in the integral form  
 
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Radial profiles of the longitudinal component of the 

SC field from the j
th

 slice normalized to the field at the 

slice surface  
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shown in Fig. 3. The radial profiles are built at different 

distances 
j j

Z z z r      from the j
th

 slice. One can see 

that  
 , ,

j

z j j
E r r z z       is independent from the radius 

r   on the surface of the j
th

 slice ( 0Z   ) and equals the 

surface charge density. Apart too this Fig. 3 shows that 

the field ceases to be independent on the radius r   far 

from the slice 5Z   .  

 
Fig. 3. Radial profiles of the z-component of the SC field 

from the j
th

 slice normalized to the field at the slice sur-

face taken at different relative distances 
j j

Z z z r      

from the slice. The curves with numbers 1, 2, 3, 4, 5 

correspond to Z’=0, 0.2, 0.6, 1, 5, accordingly 

Next, by averaging the field of the j
th

 slice Eq. (13) 

over the disc with the radius r  , one can obtain as 
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which is normalized by  

0

j

E   shown along Z   in 

Fig. 4 for two relative radiuses 
j

R r r   .  

 
Fig. 4. The longitudinal distributions of the averaged 

and normalized SC field Eq. (14) for two relative  

radiuses 
j

R r r   . The curves 1, 2 correspond  

to R   =1, 0.01, accordingly 

1.5. ANALYTICAL APPROXIMATION  

From Fig. 4 one can see that within relative dis-

tances 0 2
j j

z z r      the field on the axis is different 

from the field averaged over the slice. Let us find the 

analytical approximation of the difference 
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For this Eq. (14) can be represented as  
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where the difference 
 j
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E   is determined as:  
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Further we expand a function in the square brackets 

of Eq. (16) into Taylor’s series in degrees of 
j

x r r   

and build the following approximation 
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Coming back into the laboratory frame K, the longi-

tudinal component of the SC field averaged over the 

slice is given as the superposition of the fields from 

each slice  
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where  
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2. SELF-CONSISTENT MODEL  

Taking into account the equations obtained above, 

we can write the system of self-consistent equations of 

the motion of slices with the boundary conditions in the 

following form:  

і) the equation for the rms radius of the j
th

 slice 
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іі) the equation of the longitudinal motion of the j
th

 

slice in the drift space 
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ііі) the boundary conditions: 

 

 

 
 
 

 

     
 

 

0

0 0 ,0

,0 0 ,0

1 , 1, 2 .. ,
2 1

0 , ,

, ,

b b

i

i i

i i z i z

i i i i

r r r i r

t t
t i i N

N

z t t

t

 

   

    


 

 

 (23) 

where 
b

t  is the initial bunch duration, N is a number of 

the slices in the bunch,  0
0 ,I t is the initial beam cur-

rent. 

3. RESULTS OF NUMERICAL SIMULATION 

OF BALLISTIC BUNCHING  

The differential equations (19) - (23) were calculated 

by the Runge-Kuta method of the fourth order of accu-

racy. The electron beam at the entrance to the drift 

space was considered with the parameters given in the 

Table, which are characteristics of the project of the 

combined THz/X radiation source, on the basis of a free 

electrons lasing and Compton scattering [7, 8]. 

Beam parameters 

Initial beam current 1 А 

Initial beam duration 1 ns 

Beam energy 400 kеV 

RMS normalized beam emittance 0.4 mmmrad 

RMS beam radius  2 mm 
 

The Figs. 7 and 8 depict the distributions of the lon-

gitudinal SC force averaged over of each slice and the 

radial SC force taken on the rms slice radius. 
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Fig. 7. The distribution of the averaged longitudinal SC 

force along the bunch 
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Fig. 8. The distribution of the radial SC force  

along the bunch taken at the rms slice radius 

As it should expected, the SC field of a homogeneous 

long bunch is strongly variated only along the edges, 

which is a source of growth of the effective transverse 

emittance. In order to investigate how the longitudinal 

profile of the SC field will be transformed during ballis-

tic bunching, consider the 400 keV beam that is premo-

dulated by velocity by a field in RF cavities with fre-
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quencies of 176.1 MHz and 528.3 MHz (the third har-

monic), by a law 

  
, 0

0 2 3

0 0 0
1

z

z

A B C D


 

  


   

, (24) 

which approximates to the hyperbolic dependence of the 

initial velocity on the time of the flight of electrons at 

entrance to the drift space [7], for the parameters: 

z,0 = 0.828, A = 0.00670805, B = -0.0781966,  

C = -0.00607415, D = 0.0126568, where 
0 0

t  . 

3.1. KINEMATIC APPROXIMATION 

If we do not take into account the influence of a SC 

field, so the bunch peak current under ballictic bunching, 

will change by a law  
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1
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d

d
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



, (25) 

where z c   is the dimensionless longitudinal 

coordinate. The distance that the beam will pass to the 

point of the maximum compression is 

, 0

0 2

0 0
2 3

z

f

B C D


 

 
 

 

,       (26) 

where 
0

  is the deviation of a slice coordinate from the 

geometric center of the initial bunch that has the veloci-

ty 
, 0z

 . 

In Fig. 9 it is shown the histogram of the peak current 

distribution at the moment of the maximum bunching in 

the immediate vicinity of the cross section with the 

coordinate 2 .8 9 6
f

m c  . The minimum width of 

the column of the histogram is 0.33 mm, which corres-

ponds to the time span of 1.355 psec. From Fig. 9 it is 

seen that the width at the half-height is about 1.65 mm. 
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Fig. 9. The distribution of a bunch peak current  

at time of the maximum compression 
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Fig. 10. The longitudinal profiles of the radial SC force 

in the drift space at different moments of time  
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Fig. 11. The longitudinal profiles  

of the radial SC force at the maximal compression 

In Figs. 10,11 it is depicted the longitudinal profiles 

of the radial component of the SC force along bunches 

compressing in the longitudinal direction in the drift 

space at different moments of time. 

It should note that ambiguity of the radial component 

of the SC force in the region of the maximal bunching 

(see Fig. 11) is due to its dependence on an electron 

energy (as it can be seen from Eq. (8)). At the time of the 

maximum compression electrons with different energies 

can have the same longitudinal coordinate. This is clear-

ly seen from the following figure (Fig. 12), which shows 

the dependence of the energy on the electron coordinate 

within the bunch at a moment of the maximum bunch-

ing. 
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Fig. 12. The distribution of electron energy along  

the bunch at the maximal compression  

3.2. SELF-CONSISTENT DYNAMICS 

3.2.1. CHOIS OF MAGNETIC FIELD  

OF SOLENOID 

In order to minimize emittance growth a drifting 

beam, (at least in that part of the drift space where the 

bunch can be considered as long (
0 z r

   )) it is 

necessary to fulfill conditions of the equilibrium Bril-

louin flow, for which the magnetic field of a solenoid 

satisfies an equation [17]. 
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,  (27) 

and the beam at the entrance to the drift space must 

have the minimal radial divergence. Here the factor С1  

is a correction factor, which is determined by the finite 

beam length and must be set numerically; Іа = 17045 А.  

As a first step at optimization of the longitudinal 

profile of the magnetic field, on the one side, and in 

order to test the physical model, on the other side, calcu-

lations have been made that specify the magnitude of 

the magnetic field for the non-modulated beam. The 

results of such calculations are presented in Fig. 13, 

where the dependencies of the rms beam radius are 

shown for different values of the correction factor C. 
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Fig. 13. The rms beam radius v.s. longitudinal  

coordinates in the drift space at different values 

of the correction factor C 

From Fig. 13 it follows that the magnetic field 

Eq. (32) with the correction factor С = 1.00275 

(
, 0

1 0 8
z

B Г с ) maximally satisfices the condition of 

the equilibrium Brillouin flow at the beginning drift. In 

this case the evolution of the rms normalized transverse 

emittance that one can see in Fig. 14, oscillates at the 

start level that coincides well with the results obtained 

in Ref. [17].  
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Fig. 14. The evolution of the rms normalized transverse 

beam emittance in the drift space  

3.2.2. IMPACT OF SC FIELD ON BUNCHING 

In this subsection we consider results of calculating 

ballistic bunching of the beam premodulated on velocity 

(see Eq. (24)), taking into account a self-consistent inte-

raction with its own SC field. The distributions of the 

bunch peak current in the drift space at different mo-

ments of time are shown in Fig. 15. The minimum width 

of the column of the histogram is the same as in Fig. 9. 
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Fig. 15. The distributions of the bunch peak current  

in the drift space at different moments of time 

In Fig. 16 one can see the image of the distribution of 

the bunch peak current at the time of the maximal com-

pression.  
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Fig. 16. The distribution of the bunch peak current  

at the time of the maximal bunch compression 

It should note that despite the "tails" of the bunch 

significantly lengthened because of the fact that the lon-

gitudinal component of the SC field acts continuously 

during drift, as one can see from the comparison of 

Figs. 9 and 16, however, we can also observe as well the 

significant reduction of the bunch width at half-height 

from 1.65 mm (see Fig. 9) to 0.33 mm (see Fig. 16). As 

it expects, due to act of the longitudinal component of 

the SC field, there is no overtaking of the slices. This is 

clearly seen from the next figure, which shows as the 

slice energy dependence on z-coordinates within the 

bunch at the moment of the maximum longitudinal com-

pression. 
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Fig. 17. The distribution of an electron energy  

along the bunch at the maximal compression 

The unexpected 5-fold shortening of the bunch (see 

Fig. 16), as compared with the kinematic approximation 

(see Fig. 9), can be explained by the significant increase 

of the transverse size of the slices as it is seen from 

Fig. 18. This leads to decrease of the beam charge densi-

ty in this area and, as a consequence, to reduce the longi-

tudinal SC field of repulsion of the slices.  
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Fig. 18. The distribution of the rms slice radius along  

the bunch at the maximal compression  

The transformations of the distribution of the SC 

forces at the moment of the maximum compression are 

shown in Figs. 19, 20. 
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Fig. 19. The distribution of the averaged longitudinal SC 

force along a bunch at the maximal compression 
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Fig. 20. The longitudinal profiles of the radial SC force 

taken at the maximal compression 

The next Figs. 21, 22 demonstrate the evolution of 

such statistical beam parameters during the drift as: the 

rms radius and normalized transverse emittance.  
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Fig. 21. The rms beam radius in the drift space 
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Fig. 22. The rms normalized transverse beam emittance 

along the drift space  

The beam emittance growth, that is observed starting 

from the mark 2 m of the drift space (see Fig. 22), can be 

a consequence of two factors. On the one hand, from this 

place it begins to growth heterogeneity of the radial 

component of the SC field that results in non synchron-

ous rotate of the slices on the phase plane (r, r) and 

thus leads to increase of the effective emittance. On the 

other hand, from this mark the beam radius begins to 

increase, (see Fig. 21), that can cause as well growth of 

the correlated transverse emittance due to its connection 

with the longitudinal emittance [15]. The estimations 

show that the transverse normalized emittance, corre-

lated with longitudinal one, increases as ~ r
4
. Therefore 

in order to switch off this mechanism of the emittance 

growth we have to optimize the longitudinal profile of 

the focusing magnetic field, so that the beam radius 

keeps the original value. 

SUMMARY 

The multislice method of calculating interaction of 

an electron beam with own SC field was developed that, 

in contrast to the similar approaches proposed earlier, 

takes into account the possibility of realizing not only a 

bunch with uniform charge density, but also allows its 

deeply transformation in a drift space.  

The developed approach does not require of small-

ness of inter-slice energy spread, avoiding restriction on 

a magnitude of RF field that modulates the beam on 

velocity, before it to be injected into a drift space. 

The multislice method allows to calculate self-

consistence dynamics under ballistic bunching and to 

study conditions of the maximal longitudinal compres-

sion of the bunch and factors that restrict their as well to 

optimize the longitudinal profile of an external magnetic 

field with aim to reach the minimal transverse norma-

lized effective emittance. 
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МУЛЬТИДИСКОВАЯ МОДЕЛЬ ЭЛЕКТРОННОГО СГУСТКА ДЛЯ ИССЛЕДОВАНИЯ  

БАЛЛИСТИЧЕСКОГО ГРУППИРОВАНИЯ НИЗКОЭМИТАНСНЫХ ПУЧКОВ 

А.M. Опанасенко, В.А. Горяшко 

При баллистическом группировании электронного пучка неоднородность вдоль сгустка поперечной 

компоненты поля пространственного заряда существенно увеличивается, что может привести к росту попе-

речного эмитанса, если не будет задействован специальный способ его компенсации. Для исследования этой 

проблемы развита мультидисковая модель сгустка релятивистских заряженных частиц, не требующая усло-

вия малости междудискового энергетического разброса. Это снимает ограничения на величину поля, моду-

лирующего пучок по скорости перед его инжекцией в дрейфовое пространство. Поперечные характеристики 

динамики сгустка мы находим из решения дифференциального уравнения для среднеквадратичного размера 

огибающей пучка. 

МУЛЬТИДИСКОВА МОДЕЛЬ ЕЛЕКТРОННОГО ЗГУСТКА ДЛЯ ДОСЛІДЖЕННЯ 

БАЛІСТИЧНОГО ГУРТУВАННЯ НИЗЬКОЕМІТАНСНИХ ПУЧКІВ 

А.М. Опанасенко, В.А. Горяшко 

При балістичному гуртуванні електронного пучка неоднорідність вздовж згустка поперечної компоненти 

поля просторового заряду суттєво збільшується, що може призвести до росту поперечного емітансу, якщо не 

буде задіяний спеціальний спосіб його компенсації. Для дослідження цієї проблеми розвинуто мультидиско-

ву модель згустка релятивістських заряджених частинок, яка не потребує умови малості між-дискового ене-

ргетичного розкиду. Це знімає обмеження на величину поля, що модулює пучок по швидкості, перед його 

інжекцією в дрейфовий простір. Поперечні характеристики динаміки згустка знаходимо із рішення дифере-

нційного рівняння для середньоквадратичного розміру огинаючої пучка. 


