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In the work, the problem of convective heat transfer in the fuel cartridge with fuel rods, including the case of broken

symmetry in the packing of rods, is solved with new design tools of the R-functions method and the program complex

POLYE. The developed design tools for constructing the equations of the boundaries of domains with translational

and cyclic types of symmetry made it possible to significantly reduce the quantity of operations with a subsequent

automation of this process, and, consequently, to reduce the time for solving problems. Problems are solved by a

variational-structural method. The paper considers the influence of only one rod that breaks the symmetry of the

packing, when it is located either in the central or in the peripheral zone of the cartridge, both with keeping the whole

bundle parallel and with the rod’s curvature. In the presence of several ”non-standard” rods, it is also important to

calculate the temperature field for the cartridge as a whole. Working with the mathematical model of the process

and the computational experiment make it possible to study the properties and behavior of the process in various

situations without serious consequences, relatively quickly and without significant expenditure.

PACS: 28.41.Bm,44.05.+e,47.11.-j

1. INTRODUCTION

Reactor fuel assemblies used in the power engineer-
ing are bundles of fuel rods. Processes of hydrody-
namics and heat transfer in such systems are quite
complex, but their precise description is necessary in
order to achieve the optimal design characteristics at
nominal operating modes as well as to analyze the
reliability in deviations from nominal modes and in
emergency states. For example, an accurate calcu-
lation of the temperature conditions of fuel elements
in fast reactors makes it possible to refine the esti-
mated sizes, swelling and bending of elements, etc.,
which determines the operability of the reactor core
and the allowable level of fuel burn-up. Increasing
the requirements for the thermal-hydraulic calcula-
tion of fuel cartridges has led to the development of
new methods for the theoretical investigation of pro-
cesses in bundles of fuel rods. Currently developed
methods and programs [1, 2, 3] differ in terms of ini-
tial solvable equations and methods for their solution,
the consideration of various factors, the relations for
initial constants, and, accordingly, on the calculation
accuracy and classes of problems to be solved. A
common feature for all techniques is a closed rela-
tionship between the velocity and temperature fields.

It is impossible to calculate the heat transfer reli-
ably without knowing the velocity field. In [3], the
conjugate heat transfer problem under the rod flow
of the heat transfer agent in the lattices of fuel ele-
ments was reduced to a solution for one translational
element based on the symmetry of the system. How-
ever, an analysis of the nature of the velocity and
temperature distribution performed in [7, 8, 9] allows
us to conclude that the consideration of the veloc-
ity field for a cell, in the case of its remoteness from
the boundary, is expedient. The temperature field in
this case will be very far from reality, as evidenced by
the results obtained for the cartridge as a whole. In
[4, 5, 6], the foundations of new constructive tools of
the theory of R-functions for the analytical descrip-
tion of geometric objects with various types of sym-
metry, including translational and cyclic, were laid.
In [7, 8], equations of cartridges with 96 or more fuel
elements have been constructed, and investigations
of hydrodynamic and temperature fields by the R-
function method have been started. The paper [9] is
devoted to the mathematical modeling of convective
heat transfer in an octagonal fuel cartridge with 37
fuel elements as well as to the investigation of the
packing type (checkerboard, corridor and cyclic) in-
fluence on the form of the resulting fields.
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The aim of this work is the appliance of new con-
structive tools of the R-functions method and the
POLYE software package for thermal-hydraulic cal-
culation of fuel rod cartridges, including the case of
broken symmetry in the rods packing.

2. MAIN PART

The basic system of equations describing the process
of heat transfer in a viscous fluid flow with variable
physical properties is very complex, and its general
solution is associated with the difficulties caused
by the nonlinearity of the equations of motion and
energy in the presence of convective terms, the de-
pendence of the physical properties of the liquid on
temperature. Due to the dependence of the dynamic
coefficient of viscosity µ and the density of the fluid
ρ on the temperature T velocity and temperature
fields are mutually related, and therefore the equa-
tions of motion and continuity can not be solved
independently of the equation of energy. To simplify
the problem, let us consider the case of constancy
of all physical properties of the liquid and tempera-
ture, stationarity of processes, thermal stabilization
in accordance with z and laminar flow of the liquid.
Then, from the basic system of equations

DT

Dτ
= α∆T +

qν

ρcρ
+

µΦ

ρcρ

D
−→
V

Dτ
= −1

ρ

−→
∆ρ+ ν∆

−→
V

div
−→
V = 0 ,

(1)

we get 
div(λ∆T ) = gν − VzC1

∆Vz = −∆P

µl
= −C ,

(2)

where:
D
Dτ = ∂

∂τ + (
−→
V ·

−→
∆) – the substantial (or total)

derivative,
µΦ - dissipative function,
α = λ

ρcρ
– coefficient of thermal diffusivity,

cρ – heat capacity of medium,

qν – capacity of internal heat sources,
∆P – constant pressure drop along the tube on

an arbitrarily selected portion of the length l.

Thus, the mathematical model of heat transfer in
the laminar flow of a liquid along a cartridge with
fuel elements reduces to a system of equations{

∆Vz = −C in Ωb

∩
Ωtν

−div(λi∆Ti) = Fi in Ωb,
(3)

where {
F1 = −Vz in Ωb

∩
Ωtν

F2 = qV in Ωtν ,

with boundary conditions of the form

Vz

∣∣
∂Ωb

∩
∂Ωtν

= 0,

∂T

∂n
+ hT

∣∣
Ωb

= 0,

T1

∣∣
∂Ωtν

= T2

∣∣
∂Ωtν

, (4)

λ1
∂T1

∂n1

∣∣
∂Ωtν

= λ2
∂T2

∂n2

∣∣
∂Ωtν

.

Consider a typical structural diagram of the reac-
tor, which core is assembled from a large number of
fuel cartridges [2,7]. These cartridges are hexagonal
casings, where fuel elements are placed.

To construct the equations corresponding to ge-
ometric objects with translation symmetry along a
straight line, we use the following theorem [5, 6].

Theorem 1. Let the translation domain∑
0 = [σ0(x, y, z) ≥ 0] be symmetrical

about the axis Oy and can be enclosed in
a vertical band −a < x < a, and the domains∑

i = [σ0(x− hi, y, z) ≥ 0] be obtained as a transfor-
mation result of transferring the domain

∑
0 along

the abscissa axis by multiples of h > 2a. Then the
equation of the boundary ∂Ω of the domain

Ω =
∪
i∈Z

∑
i

has the form
ω(x, y, z) ≡ σ0(µ(x, h), y, z) = 0,

where

µ(x, h) =
4h

π2

∞∑
i=1

(−1)i+1

(2i− 1)2
sin

(2i− 1)xπ

h
.

To construct the equations corresponding to ge-
ometric objects with point symmetry of cyclic type,
we use the following theorem [5, 6].

Theorem 2. Let the translational domain∑
0 = [σ0(x, y, z) ≥ 0] be symmetrical about the ab-

scissa axis, and the domain
∑

1 = [σ0(x−r0, y, z) ≥ 0]
can be located within the sector

−α ≤ 0 ≤ α, 0 < α < π
n ,

domains∑
k = [σ0(r cos(θ − 2πk

n )− r0, r sin(θ − 2πk
n ), z) ≥ 0]

be obtained as a result of turning the domain∑
1 = [σ0(x− r0, y, z) ≥ 0]

in the plane xOy around the origin to angles 2πk
n .

Then the equation of the boundary σΩ of the do-
main

Ω =
n−1∪
k=0

∑
k

has the form
ω(x, y) = σ0(r cosµ(θ, n)−r0, r sinµ(θ, n), z) = 0,

where
r =

√
x2 + y2, θ = arctan y

x ,
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µ(nθ) =
8

nπ

∑
k

(−1)k+1 sin[(2k − 1)(nθ/2)]

(2k − 1)2
.

Construct the equation of fuel cartridge with 169
fuel elements and extended triangular packing, which
is called checkerboard sometimes. Note that when
applying conventional methods used in the theory of
R-functions [4] , we obtain 171 R-operations in the
general equation of the fuel cartridge as a result. The
cumbersome formula will not only lead to an increase
in the counting time, but also, possibly, to some sym-
metry breaking due to the non-associative nature of
R-operations. Therefore, we use Theorem 2 to con-
struct the equation of hexagonal casing.

Consider the equation of the line
σ ≡ Rν − x ≥ 0

and a periodic function

µν =
4

3π

∑
k

(−1)k+1 sin[(2k − 1)3θ]

(2k − 1)2
.

As a result, we get
ωb ≡ Rν −R cosµν ≥ 0,

where
r =

√
x2 + y2, θ = arctan(y/x).

To construct a triangular packing of fuel elements,
we use Theorem 1. Define translational equations of
fuel elements

f1 = R2 − µ2
x − µ2

y ≥ 0,
f2 = R2 − µ2

x1 − µ2
y1 ≥ 0,

where

µx =
4hx

π2

∑
k

(−1)k+1
sin

[
(2k − 1)πxhx

]
(2k − 1)2

,

µy =
4hy

π2

∑
k

(−1)k+1
sin

[
(2k − 1)πxhy

]
(2k − 1)2

,

µx1 =
4hx

π2

∑
k

(−1)k+1 sin [(2k − 1)π(x− hx/2)]

(2k − 1)2
,

µy1 =
4hy

π2

∑
k

(−1)k+1 sin [(2k − 1)π(y − hy/2)]

(2k − 1)2
.

Then the equation of fuel cartridge takes the form

ω ≡ ωb

∧
0

ωtν ≥ 0,

ωtν ≡ (f1
∨
0

f2) ≥ 0.

The function ω(x, y) is constructed with the fol-
lowing values of the letter parameters: R = 1.542,
hx = 11.9248, hy = 6.939, n0 = 6, rk = 46. It should
be noted that R-operations were used only twice in
the equation of fuel cartridge by the proposed tech-
nique.

The construction of displaced fuel elements was
carried out as follows.

For displacement in the central zone

ωtν ≡ ((f1
∨
0

f2)
∧
0

fρ)
∨
0

fs ≥ 0, (5)

where

fs =
R2 −

(
x− hx

3

)2 − y2

2R
≥ 0,

fρ =
(R+ δ)2 − (x− hx)

2 − y2

2R
≥ 0.

For displacement in the far zone

ωtν ≡ ((f1
∨
0

f2)
∧
0

fρd)
∨
0

fsd ≥ 0, (6)

where

fsd =
R2 −

(
x−

(
3hx − hx

3

))2 − y2

2R
≥ 0,

fρd =
(R+ δ)2 − (x− 3hx)

2 − y2

2R
≥ 0.

Note that structurally the formula (5) and (6) are
similar.

For the solution of (3), (4) we used the R-
functions method in combination with the Ritz vari-
ational method. The structure of the solution of the
laminar flow problem for longitudinal flow past fuel
rods has the form

Vz = ωρ1,

where
ω(x, y) ≡ ωb

∧
0

ωtν ≥ 0

- equation of the boundary of the cross section of the
fuel cartridge,

ρ1 =
N∑
i=1

cikφik(x, y)

– undefined component sought, minimizing the func-
tional

I =

∫
Ω

((∇Vz)
2 − 2CVz)dΩ.

Note that the solution Vz is obtained analytically
and used without any further processing (approx-
imation, interpolation), substituting in the right-
hand side of the equation of thermal conductiv-
ity. The structure of the solution of the problem
of determining the temperature field was used as
exactly satisfying the boundary conditions on ∂Ωb

u = ρ2 + ωb(−D1ρ2 + hρ2), and as in the form
T = ρ2, where, as before,

ρ2 =
N∑
i=1

dikφik(x, y).
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Here it should be noted that the boundary condi-
tions

∂T

∂n
+ hT |ωb

= 0

and

λ1
∂T1

∂n1

∣∣
∂Ωtν

= λ2
∂T2

∂n2

∣∣
∂Ωtν

are natural and follow from the Ritz functional

I =

∫
Ω

(λ(∇T )2 − 2FT )dΩ+

∫
∂Ωb

hT 2d∂Ωb.

In this case, the next switch has been used:

λ = λ1
1 + signω

2
+ λ2

1− signω

2
,

F = qν
1− signω

2
− Vz

1 + signω

2
.

Both linear and cubic (at the exact meeting all
the boundary conditions) Schoenberg splines with the
dimension of the approximation space of 10,000 to
40,000 cells were used as the approximating means
φik(x, y) Computational experiments were conducted
in the conditions of operation of the POLYE system
developed in the Institute for Mechanical Engineering
Problems of the NAS of Ukraine. The results of stud-
ies for symmetric packing and packing with a sym-
metry broken in a straight and curved fuel element in
the central zone and at the periphery are presented
(Fig.). Each packing contains 169 rods. By chang-
ing the values of the letter parameters λ1, λ2, h, qν,
it is possible to obtain different distributions of the
investigated fields. From the analysis of the results
obtained, it follows that in the case of packing sym-
metry is broken, while maintaining the parallelism of
the rods, the local temperature rises by 2%. In the
case of curvature of the rod, the local temperature
rises by 7%.

Pictures of the distribution of the velocity field and the temperature field, including a broken symmetry of
the rods packing, and a comparative analysis of the graphs in the cross section 0 ≤ x ≤ Rν , y = 0
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3. CONCLUSIONS

It is shown that the R-functions method is effective
for solving the problems of the physical field calcula-
tion in complex shape structural elements of nuclear
power plants. The developed design tools for con-
structing the equations of domain boundaries with
translational and cyclic symmetry types allowed to
significantly reduce the number of operations with
subsequent automation of the process, and, hence, to
reduce the time for solving the problems. In this pa-
per, only one rod that breaks the symmetry of the
packing is considered. Multiple ”custom” cores will
lead to more significant temperature field calculations
for the cartridge as a whole. Mathematical modeling
and the computer experiment associated with it are
indispensable in those cases when the natural exper-
iment is impossible or difficult for one reason or an-
other. In addition, working with the mathematical
model of the process and the computational exper-
iment make it possible to study the properties and
behavior of the process in various situations with no
pain, relatively quickly and without significant ex-
penditure. At the same time, computational exper-
iments with object models allow us to study them
thoroughly and deeply, relying on modern numerical
methods. The reliability of the analytical identifi-
cation of cartridges is confirmed by their visualiza-
tion. The reliability of calculation methods, results
and conclusions is confirmed by an analysis of the nu-
merical convergence of solutions and by a calculation
of the residual.
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ÒÅÏËÎÃÈÄÐÀÂËÈ×ÅÑÊÈÉ ÐÀÑ×ÅÒ ÊÀÑÑÅÒ ÒÂÝËÎÂ ÏÐÈ ÍÀÐÓØÅÍÈÈ
ÑÈÌÌÅÒÐÈÈ ÓÏÀÊÎÂÊÈ ÑÒÅÐÆÍÅÉ

Ò.È.Øåéêî, Ê.Â.Ìàêñèìåíêî-Øåéêî, Ð.À.Óâàðîâ, Ì.À.Õàæìóðàäîâ

Ñ èñïîëüçîâàíèåì íîâûõ êîíñòðóêòèâíûõ ñðåäñòâ ìåòîäà R-ôóíêöèé è ïðîãðàììíîãî êîìïëåêñà

POLYE ðåøàåòñÿ ñîïðÿæåííàÿ çàäà÷à êîíâåêòèâíîãî òåïëîîáìåíà â òîïëèâíîé êàññåòå ÒÂÝËîâ, â òîì

÷èñëå â ñëó÷àå íàðóøåíèÿ ñèììåòðèè óïàêîâêè ñòåðæíåé. Ðàçðàáîòàííûå êîíñòðóêòèâíûå ñðåäñòâà ïî-

ñòðîåíèÿ óðàâíåíèé ãðàíèö îáëàñòåé ñ òðàíñëÿöèîííûì è öèêëè÷åñêèì òèïàìè ñèììåòðèè ïîçâîëèëè

ñóùåñòâåííî óìåíüøèòü êîëè÷åñòâî îïåðàöèé ñ ïîñëåäóþùåé àâòîìàòèçàöèåé ýòîãî ïðîöåññà, à ñëåäî-

âàòåëüíî, óìåíüøèòü è âðåìÿ ðåøåíèÿ çàäà÷. Çàäà÷è ðåøàþòñÿ âàðèàöèîííî-ñòðóêòóðíûì ìåòîäîì.

Ðàññìîòðåíî âëèÿíèå ëèøü îäíîãî ñòåðæíÿ, íàðóøàþùåãî ñèììåòðèþ óïàêîâêè è ðàñïîëîæåííîãî ñíà-

÷àëà â öåíòðàëüíîé, à çàòåì â ïåðèôåðèéíîé çîíå êàññåòû, êàê ïðè ñîõðàíåíèè ïàðàëëåëüíîñòè âñåãî

ïó÷êà, òàê è â ñëó÷àå èñêðèâëåíèÿ ñòåðæíÿ. Ïðè íàëè÷èè íåñêîëüêèõ "íåñòàíäàðòíûõ"ñòåðæíåé ñóùå-

ñòâåííûì òàêæå ÿâëÿåòñÿ ðàñ÷åò òåìïåðàòóðíîãî ïîëÿ äëÿ êàññåòû â öåëîì. Ðàáîòà ñ ìàòåìàòè÷åñêîé
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ìîäåëüþ ïðîöåññà è âû÷èñëèòåëüíûé ýêñïåðèìåíò äàþò âîçìîæíîñòü áåçáîëåçíåííî, îòíîñèòåëüíî

áûñòðî è áåç ñóùåñòâåííûõ çàòðàò èññëåäîâàòü ñâîéñòâà è ïîâåäåíèå ïðîöåññà â ðàçëè÷íûõ ñèòóàöèÿõ.

ÒÅÏËÎÃIÄÐÀÂËI×ÍÈÉ ÐÎÇÐÀÕÓÍÎÊ ÊÀÑÅÒ ÒÂÅËIÂ ÏÐÈ ÏÎÐÓØÅÍÍI
ÑÈÌÅÒÐI� ÓÏÀÊÎÂÊÈ ÑÒÐÈÆÍIÂ

Ò. I.Øåéêî, Ê.Â.Ìàêñèìåíêî-Øåéêî, Ð.Î.Óâàðîâ, Ì.À.Õàæìóðàäîâ

Ç âèêîðèñòàííÿì íîâèõ êîíñòðóêòèâíèõ çàñîáiâ ìåòîäó R-ôóíêöié i ïðîãðàìíîãî êîìïëåêñó POLYE

âèðiøó¹òüñÿ ñïîëó÷åíà çàäà÷à êîíâåêòèâíîãî òåïëîîáìiíó â ïàëèâíié êàñåòi ÒÂÅËiâ, â òîìó ÷èñëi ó

ðàçi ïîðóøåííÿ ñèìåòði¨ óïàêîâêè ñòðèæíiâ. Ðîçðîáëåíi êîíñòðóêòèâíi çàñîáè ïîáóäîâè ðiâíÿíü ãðà-

íèöü îáëàñòåé ç òðàíñëÿöiéíèì i öèêëi÷íèì òèïàìè ñèìåòði¨ äîçâîëèëè iñòîòíî çìåíøèòè êiëüêiñòü

îïåðàöié ç ïîäàëüøîþ àâòîìàòèçàöi¹þ öüîãî ïðîöåñó, à îòæå, çìåíøèòè i ÷àñ ðîçâ'ÿçàííÿ çàäà÷. Çàäà÷i

ðîçâ'ÿçóþòüñÿ âàðiàöiéíî-ñòðóêòóðíèì ìåòîäîì. Ðîçãëÿíóòî âïëèâ ëèøå îäíîãî ñòðèæíÿ, ùî ïîðóøó¹

ñèìåòðiþ óïàêîâêè, i ðîçòàøîâàíîãî ñïî÷àòêó â öåíòðàëüíié, à ïîòiì â ïåðèôåðiéíié çîíi êàñåòè, ÿê

ïðè çáåðåæåííi ïàðàëåëüíîñòi âñüîãî ïó÷êà, òàê i â ðàçi âèêðèâëåííÿ ñòðèæíÿ. Çà íàÿâíîñòi äåêiëüêîõ

"íåñòàíäàðòíèõ"ñòðèæíiâ iñòîòíèì òàêîæ ¹ ðîçðàõóíîê òåìïåðàòóðíîãî ïîëÿ äëÿ êàñåòè â öiëîìó. Ðî-

áîòà ç ìàòåìàòè÷íîþ ìîäåëëþ ïðîöåñó i îá÷èñëþâàëüíèé åêñïåðèìåíò äàþòü ìîæëèâiñòü áåçáîëiñíî,

âiäíîñíî øâèäêî i áåç iñòîòíèõ âèòðàò äîñëiäæóâàòè âëàñòèâîñòi i ïîâåäiíêó ïðîöåñó â ðiçíèõ ñèòóà-

öiÿõ.
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