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The dynamics of the oscillator system is investigated. The conditions under which this dynamics becomes unsta-
ble are determined. In particular, it is shown that plasma in constant magnetic field becomes unstable if its density 
exceeds a certain critical value. In this case, instability develope (oscillatory instability). It is shown that random 
dynamics of the particles suppresses oscillatory instability. 
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INTRODUCTION 
Plasma, located in an external magnetic field, is a key 

component in the program of controlled thermonuclear 
fusion. The features of its confinement in various mag-
netic configurations are studied in detail. Numerous 
hydrodynamic and kinetic instabilities have been investi-
gated (see, for example, [1 - 3]). It has been shown [4 - 6] 
that at plasma densities > 1014 cm-3 there are problems 
with its retention. This phenomenon has even acquired its 
own name “density limit”. A phenomenological criterion 
for the plasma density limit, the Greenwald limit, is ob-
tained. However, the physical mechanisms responsible 
for existence of restrictions on the density of confined 
plasma are still unknown. For years there is a search for 
ways to overcome this limit. In [7], as an experimental 
success, is reported that at the Alcator C-Mod tokomak a 
plasma density of 1.5×1014 cm-3 was obtained, i.e. one 
and a half times the calculated limit.  

It is possible that the mechanism described in this 
paper will to some extent allow a deeper understanding 
of the cause of the “density limit”. Below, in the second 
and third sections, we consider systems of coupled 
oscillators. The conditions for their instability are de-
termined. In the fourth section shown that the plasma, 
which is in a magnetic field, can stably exist if its densi-
ty does not exceed a certain critical value. ‘Extra’ parti-
cles ejected from the ensemble. The fifth section is 
devoted to the description of a possible mechanism for 
the suppression of oscillatory instability. In conclusion, 
the main results are formulated. 

1. DYNAMICS OF ENSEMBLE OF LINEAR 
OSCILLATORS 

Suppose we have a system with Hamiltonian: 
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This system is a system of coupled linear oscillators. 
Hamiltonian (1) corresponds to the system of equations 
for describing the dynamics of coupled linear oscilla-
tors: 

2
0 0i iq q qω µ+ = − ⋅ . 
2

0 0 0
1

N

i
i

q q qω µ
=

+ = − ⋅∑ .                   (2) 

For simplicity, we consider a system in which all 
oscillators are connected with each other only through a 
zero oscillator (Fig. 1). The normal frequencies of such 

a system are easy to find. To do this, we will look for 
the solution of system (2) in the form: 

( )exp ,i i iq a i t a constω= ⋅ ⋅ = .             (3) 
Substituting this solution into (2), we obtain the dis-

persion equation: 

( )22 2 2
0 .Nω ω µ− + =                       (4)

 
Equation (4) gives the following expressions for 

normal frequencies: 
2

0 01 / .Nω ω µ ω= ± ± ⋅                     (5) 
The signs “+” and “-” in the formula (5) before the 

root and under the root are independent. It can be seen 
that even with a very small coupling coefficient, but 
with a large number of oscillators, one of the normal 
frequencies can be very small (for the case of the sign 
“-” under the root). If the inequality holds: 

2
0Nµ ω⋅ > ,                            (6) 

then such an ensemble cannot exist. It collapses. A 
numerical analysis of the dynamics of the system (2) 
fully confirms this result. So, for example, if ten oscilla-
tors at the initial time placed randomly in the vicinity of 
the bottom of the potential well and the coupling coeffi-
cient is less than 0.3, then oscillations of the oscillators 
are limited. However, if we slightly increase the cou-
pling coefficient ( 0.3334µ = ), then the dynamics 
become unstable. Destruction criterion (6) is fulfilled. 
The ensemble collapses (Fig. 2). 
 

  
Fig. 1. Ensembles  

of oscillators. Connection 
occur only through cen-

tral oscillator 

Fig. 2. Ensembles  
of oscillators. Connection 
occur through the central 

oscillator and between 
nearest neighbors 

 

The ensemble considered above is a simplest model. 
The more realistic model is the ensemble in which all 
oscillators are connected with the central oscillator, and 
also coupled with their nearest neighbors. In addition, 
the frequency of the central oscillator is different from 
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the frequency of the other oscillators. The system of 
equations that describes the dynamics of such an en-
semble has the following form: 

2
0 0 1 1 1( ),i i i iq q q q qω µ µ + −+ = − ⋅ − +    (7) 
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To find the conditions for the existence of such an 
ensemble, it is convenient to rewrite the system (7) in 
the form: 

2
0 ,Q Q N qω µ+ = − ⋅ ⋅

                       (8) 
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We seek solutions system (8) in the 
form: ~ exp( )Q i tω⋅ ⋅ . Then for normal frequencies 
the following expression can be obtained: 
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with 2 2
2 0 2ω ω µ= + . 

All the features of the dynamics of such system are 
similar to the features of the previous system of oscilla-
tors. The condition for the destruction of this system is: 

2 2 2
2 1Nµ ω ω> .                        (10)  

2. ENSEMBLE OF NONLINEAR 
OSCILLATORS 

Let’s write the system of differential equations, 
which describes the dynamics of an ensemble of math-
ematical pendulums, in which each oscillator is con-
nected with any other: 

sin
N

i i j
j i

x x xµ
≠
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The system of equation (11) was investigated by 
numerical methods. The coupling coefficient between 
the oscillators was chosen small ( 310µ −< ). The parti-
cles, at the initial time were located in the vicinity of the 
equilibrium state. In the general case, during certain 
time interval, the particles oscillate in the potential 
having been captured by this potential. However, de-
pending on the magnitude of the coupling coefficient, 
the initial position of the particles in the potential and 
on their number, some of the particles are ejected from 
the potential. Departure of one of the particles is shown 
in the fig. 3. This case corresponds to the dynamics of 
ten oscillators that are connected by the coupling coef-
ficient 0.0005µ = . The maximum dimensionless initial 
velocity of one of the particles (not necessarily theone 
ejected) was equal to 0.4. It should be noted that the 
time of particle departure from the potential is very 
sensitive to small changes in the potential itself, the 
coupling coefficients, and particle position. To this one 
can add that the dynamics of all particles is locally 
unstable [9, 10]. The dynamic chaos is developing. If 
one removes the particles that flew out of the ensemble, 
then the dynamics of the remaining particles remain 
restricted. 

3. DYNAMICS OF PLASMA PARTICLES  
IN A MAGNETIC FIELD 

Consider the motion of particles with a charge e  in 
an external magnetic field directed along the axis 
z : { }0 0,0,H H=


. The particles rotate around the mag-
netic field lines, thus move with acceleration and radi-
ate. We consider the ideal plasma; therefore, the Cou-
lomb interaction of particles not be taken into account. 

 
Fig. 3. The representative 
dynamics of particles that 

leave an ensemble of interact-
ing particles. At that, this 

dynamics is characteristic of 
both linear and nonlinear 

oscillators 

 
Fig. 4. The integration 
domain in the formula 
(19). maxR  maximum 

distance at which oscil-
lators can interact 

 

Let’s assume that the interaction is carried out using 
only fields that particles emit during rotation. The electric 
field strength in the vicinity of another particle will be: 

2

e vE
c R
⋅

= −






.                             (12) 

Here e  − is the charge of the particle; v − is the ac-
celeration of the particle as it rotates; с − is the velocity 
of light; R − is the distance between particles. 

The interaction of two particles will be examined 
first with the motion transverse relative to the magnetic 
field. The dynamics of one particle can be described by 
the following equation:  
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This vector equation is convenient to rewrite in the 
form of a system of equations for the velocity compo-
nents of the first particle: 

1 1 2 ,x H y xv v vω µ= − ⋅                        (14) 

1 1 2 ,y H x yv v vω µ= − ⋅ − ⋅   
where /H eH mcω =  is the cyclotron frequency of 
rotation of the particle in magnetic field, and 

2 2/e Rmcm =  is the influence of the second particle on 
the dynamics of the first particle (coupling coefficient 
between particles). 

Differentiating the system of equations (14) and tak-
ing into account the system (14) itself, one can obtain 
the following system of equations: 
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Similar systems of equations can be written for the 
dynamics of the second particle. If there are many parti-
cles, then the equations that describe the dynamics of 
the velocity components can be represented as: 
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2 .k k j j
j k

v v vµ
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The dependent variable kv  in equation (16) defines 

either x  or the y  component of the velocity of the k 
particle. In addition, there has been introduced a new 
time H tt ω= . The coefficients of the connection jµ , 
which stand in the right side of equation (16) under the 
sign of the sum, differ from each other only by the 
distance between the particles jR . Note that with a 
large number of oscillators ( 1N >> ) and small cou-
pling coefficients ( 1jµ << ), the right side of equations 
(16) is the same for all oscillators (for all k ). In such a 
case, equations (16) can be significantly simplified: 
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Then the condition of instability has the form: 

1
( ) 2 1

N

j
j

f N µ
=
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The condition (18) can be rewritten for particle den-
sity. Indeed, the total number of interacting particles is 
equal to the density of particles multiplied by the vol-
ume occupied by the interacting particles ( N nV= ). 
The volume of a spherical layer of radius r  and thick-
ness dr  is equal 24laerV r drπ= . Using this, the left side 
of inequality (18) can be rewritten (Fig. 4): 
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And the condition (17) take the form:     

11 2
max3 10 /n R> ⋅ .                         (20) 

4. SUPPRESSION OF THE OSCILLATORY 
INSTABILITY 

There is question about possible mechanisms for the 
suppression of oscillatory instability. Taking into ac-
count the mechanism of instability, it can be expected 
that the occurrence of chaotic particle motion will sup-
press this instability. Below it is shown that such insta-
bility suppression mechanism exists. To prove this, in 
the equation (17) instead of the function 

1
( ) 2

N

j
j

f N µ
=

= ∑  that depends only on the number of 

interacting oscillators ( N ), we introduce an elementary 
random function: ( ) ( ) ( )t V t f Nε = . To simplify the 
analysis, assume that this new function has the follow-
ing properties: 

( ) 0tε = ,  1 1( ) ( ) ( ) ( )t t B t t tε ε δ= − .     (21) 
For further analysis, it is convenient to rewrite the 

equation (17) in canonical form: 
v a= ,    [ ]1 ( )a t vε= − − .            (22) 

Let’s write the equations describing the dynamics of 
the first two moments:  

v a= ( )a v t vε= − + .        (23) 
This system is for the first moments. The system for 

the second moments will be: 
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ε
τ
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The systems of equations (23) and (24) have the 
items which have correlation: [ ]( )t Rε ε . For their 
decoupling, it is convenient to use the Furutsu-Novikov 
formula (see, for example, [8]): 

1 1
1

[ ]( ) [ ] ( )
( )

Rt R B t
t

δ εε ε
δε

= , 10 t t< ≤ .        (25) 

here 
1

[ ]
( )

R
t

δ ε
δε

 is the variation (functional) derivative. 

The values of functional derivatives we need will be 
found from equations (23) and (24): 

a vδ
δε

= , 0vδ
δε

= , 
2

0vδ
δε

= , 

2

2a vaδ
δε

= ,   2av vδ
δε

= .                      (26) 

Using these formulas and formula (25), we finally 
get a system of equations for describing the dynamics 
of the first and second moments. 

For the first moments: 
v a= ,   a v= − , or 0v v+ = .        (27) 

For the second moments: 
21

2
d v va
dτ

= , 2 21
2

d a va B v
dτ

= − + , 

21
2

d va a
dτ

= .                         (28) 

From the system of equations (27) it follows that the 
dynamics of the first moments does not differ from the 
dynamics of the original oscillators. They continue to 
oscillate with a cyclotron frequency ( Hω ). The dynam-
ics of the second moments turns out to be unstable. 
Indeed, let us look for the solution of system (28) in the 
form ~ exp( )λτ . Then, to find the value λ , we obtain 
the following algebraic equation: 

( )2 2 4Bλ λ + = .                             (29) 
For our purposes, the solution of equation (29) is 

sufficient to give in two limiting cases: 
if 2 2λ << , then  4Bλ = ,            (30) 

if 2 2λ >> , then  ( )1/34Bλ = .      (31) 
The real parts of the other two roots are negative. 
Above (formula (18)) we have seen that oscillatory 

instability develops when ( ) 1f N ≥ . It can be seen from 
formula (30) that the fluctuation instability develop at 
much lower plasma densities. The increment of fluctua-
tion instability at low plasma densities ( ( ) 1f N << ) 
increases in proportion to the square of the density. At 
high densities ( ( ) 1f N >> ) (as follows from formula 
(31)), its growth is weakened (as follows from formula 
(31)), its growth is weakened. 

Thus, the presence of random dynamics of the parti-
cles disrupts oscillatory instability. The nature of the 
dynamics of the average particle velocities is main-
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tained oscillatory. They oscillate with cyclotron fre-
quency ( Hω ). The energy of these oscillations is in-
creasing. The scattering of particles in velocities is 
increasing. The growth of oscillator energy occurs due 
to fluctuation energy ( ( )V τ ). It should be noted, how-
ever, that the considered scenario of the suppression of 
oscillatory instability can be realized only in the case 
when the random dynamics of the particles already 
exist. Estimates of dynamic chaos regimes show that 
they are developing too slowly to suppress instability. 
An alternative is to impact on the plasma by intense 
noise fields. 

5. DISCUSSION AND CONCLUSIONS 
Let’s formulate the most important results: 
1. An ensemble of charged particles (electrons) in 

magnetic field can stably exist only if the density of 
these particles is less than a certain critical number that 
can be found from formula (20)). The “extra” particles 
are removed from the ensemble (see sections 2 and 3). 
Note that the instability increment can be abnormally 
large. The development of this instability (oscillator 
instability) means that plasma, for example a plasma 
cylinder, at densities above 1011 begins to dress with a 
coat of high-energy electrons. The plasma rod will be 
positively charged. As result there appear holding po-
tential.  

Note that if the plasma density exceeds a critical 
value, then it is apparently impossible to suppress the 
oscillatory instability. However, if the plasma density 
increases gradually and there is a random component in 
the particle dynamics, the dangerous oscillatory insta-
bility can be suppressed. In this case such instability 
replaced by fluctuation instability (the fifth section). 
This instability can be useful for both plasma confine-
ment and plasma heating. 

2. Above, the main attention was paid to the condi-
tions for the destruction of the oscillatory dynamics of 
an oscillator system. However, stable ensembles with a 
large number of oscillators can also have considerable 
interest. We draw attention to some features of the 
detected evolution of particle dynamics depending on 
plasma density changes. The characteristic frequency of 
the particle velocity oscillation decreases with the in-
creasing particle density  

( ( )~ cosTv v τΩ ;
1

1 2
N

j
j
µ

=

Ω = − ∑ ). 

And the corresponding particle displacement in-
creases ( ~ /r v Ω ). Such increasing in particle deflec-
tion may be undesirable. 

3. Note that the well-known models of systems con-
sisting of a large number of oscillators (e. g., in [11-
13]), formulate in one form or another conditions under 
which the dynamics of an ensemble of coupled oscilla-
tors remain oscillatory. Such an approach is natural, 
since unstable ensembles do not exist. They fall apart. 
Therefore, only the properties of oscillatory ensembles 

are studied. As a result, the question of the development 
of instabilities in a system of a large number of coupled 
oscillators has been little studied 

4. The models described above are as simple as pos-
sible. In the case, when under experimental conditions, 
for example, the magnetic field is inhomogeneous, the 
partial frequencies of the oscillators become different. 
The efficiency of the interaction of oscillators with 
different frequencies is much less than the efficiency of 
the interaction of identical oscillators. Therefore, it can 
be expected that the required number of particles for the 
destruction of an ensemble will be greater than, for 
example, formula (20) determines.  

Author is grateful to Professor V.S. Voitsenya, who 
turned attention to the problem "density limit", for use-
ful advices and for editing the English text. 
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ОСЦИЛЛЯТОРНАЯ НЕУСТОЙЧИВОСТЬ 
В.А. Буц   

Исследована динамика осцилляторной системы. Определены условия, при которых эта динамика стано-
вится нестабильной. В частности, показано, что плазма в постоянном магнитном поле становится неста-
бильной, если ее плотность превышает некоторое критическое значение. В этом случае развивается неста-
бильность (колебательная неустойчивость). Показано, что случайная динамика частиц подавляет колеба-
тельную неустойчивость.  

ОСЦИЛЯТОРНА НЕСТІЙКІСТЬ 
В.О. Буц 

Досліджено динаміку осциляторної системи. Визначені умови, при яких ця динаміка стає нестабільною. 
Зокрема, показано, що плазма в постійному магнітному полі стає нестабільною, якщо її густина перевищує 
деяке критичне значення. У цьому випадку розвивається осциляторна нестабільність (коливна нестійкість). 
Показано, що випадкова динаміка частинок пригнічує осциляторну нестійкість. 
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