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CHERENKOV RADIATION OF THE RELATIVISTIC ELECTRON 
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The process of wakefields excitation by the relativistic electron bunch in dielectric media with ion type of chem-

ical bond is studied. The spatio-temporal structure of the excited wakefield in ion dielectric waveguide is obtained 
and investigated. It is shown that the excited wakefield in the infrared and longer wavelength ranges consists of the 
field of longitudinal optical phonons and Cherenkov radiation as a set of eigen electromagnetic waves of the dielec-
tric waveguide. 
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INTRODUCTION 
The Cherenkov radiation effect of charged particles 

(bunches of charged particles) moving in a dielectric 
medium can be used for realization of the wakefield 
method of charged particles acceleration [1 - 3]. Moreo-
ver, as a rule, the wakefield excitation process was con-
sidered without taking into account the frequency dis-
persion of the dielectric constant of the medium 

0( ) Constε ω ε= = . Meanwhile, taking into account the 
dependence of the dielectric constant on frequency leads 
to a number of qualitative features of the picture of 
wakefield excitation in dielectric structures. First of all, 
it is possible to excite longitudinal potential oscillations 
of a crystal dielectric, for example, longitudinal optical 
phonons in dielectric crystal media with ion bond. In 
addition, in an ion dielectric in the infrared frequency 
range there is an additional branch of transverse elec-
tromagnetic waves. The Cherenkov excitation of elec-
tromagnetic waves belonging to this branch is also of 
interest. 

In the present work, the process of excitation of 
wake electromagnetic fields in an ion dielectric medium 
by a relativistic electron bunch (REB) is investigated. 
For definiteness, we will consider ion alkali-halide die-
lectrics with the formula I VIIA B , where IA is any ele-
ment of the periodic table belonging to the first group 
(alkali metals, for example, Na, K, etc.), VIIB is any sev-
enth group halide element, for example F, Cl, etc. The 
choice of alkaline-halide crystal dielectrics is primarily 
due to their relatively simple internal structure and, ac-
cordingly, a simple dependence ( )ε ω , which allows us 
to study the process of wakefields excitation by REB 
with analytical methods. Our aim is to study the fre-
quency spectrum of excited wakefields and their spatio-
temporal structures. 

We restrict ourselves to the study of wake fields in 
the infrared and lower frequency ranges. This is due to 
the fact that for efficient excitation of the wavefield by 
an electron bunch, it is necessary to achieve coherence 
of electromagnetic waves excitation. For this, it is nec-
essary that the longitudinal and transverse dimensions 
of the electron bunch should be less (substantially less) 
than the length of the excited wave. For optical and es-
pecially ultraviolet frequency ranges, this requirement is 
very problematic. And if this requirement is not satis-
fied, the amplitude of the wake wave will be insignifi-
cant. 

1. STATEMENT OF THE PROBLEM.  
BASIC EQUATIONS 

Let's consider the homogeneous dielectric cylinder 
of radius b , the side surface of which is covered with a 
perfectly conductive metal film. Along the axis of the 
dielectric waveguide, an axisymmetric REB moves uni-
formly and rectilinearly. The initial system of equations 
contains Maxwell's equations 

1 1 4, b
H DrotE rotH j

c t c t c
π∂ ∂

= − = +
∂ ∂

 

 


 

4 , 0divD divHπρ= =
 

,                     (1) 
,b bjρ


 are charge density and current of an electron 

bunch, ˆD Eε=
 

 is electric displacement field, ε̂  is die-
lectric constant operator of an ion dielectric.  

The system of Maxwell equations (1) describes the 
excitation of an electromagnetic field by external charg-
es and currents in a condensed dielectric medium. 

2. DETERMINATION OF THE GREEN  
FUNCTION 

We will solve the problem of wake field excitation 
by an axisymmetric electron bunch in a dielectric wave-
guide as follows. First, we determine the field (Green's 
function) of a moving charge in the form of an infinitely 
thin ring with a charge density 

0
0

0 0 0

( )1 ( )
2
r r zd dQ t t

v r v
d

ρ d
π
−

= − − − ,            (2) 

where r  is radial coordinate, 0r  is ring radius, 0t  is 
time of entry of an elementary ring bunch into the 
waveguide, 0v  is bunch velocity, 0 0( , )dQ r t  is the ele-
mentary charge of the ring connected with the current 
density of the bunch at the entrance to the dielectric 
waveguide ( 0)z =  0 0 0( , )j t r  by the relation 

0 0 0 0 0 0( , )2 .dQ j t r r dr dtπ=  
The current density of an elementary ring charge is 

determined by the expression  
0 ,zdj v d eρ=



                                    (3) 

ze  is unit vector in longitudinal direction. 
Let’s consider a bunch of electrons with the current 

density 
( ) ( )0 0 0 0 0 0( , ) / /b bj r t j R r r T t t= ,             (4) 
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where the function ( )0 / bR r r  describes dependence of 
the bunch density on radius (transverse profile), br  is 
characteristic transverse bunch size, function ( )0 / bT t t  
describes the longitudinal density profile of a bunch, bt  
is characteristic duration of the bunch. The value 0j  is 
connected with a full charge Q  by the relation 

0 / ( )eff effj Q s t= , where effs  is effective cross section of 
the bunch 

2

0

ˆ ˆ, 2 ( )eff bs r R dπ s s ρ ρ ρ
∞

= = ∫ , 

and efft  is effective bunch duration 

0 0ˆ ˆ. ( )eff bt t T dt t t t
∞

−∞

= = ∫ .  

We expand the quantities in the Maxwell equations 
(1) into the Fourier integrals over frequencies 
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0 0/t z v tt = − − , ,G GE H
 

 is electromagnetic field 
(Green's function) of elementary current and charge (6). 

The system of Maxwell equations (1), taking into 
account relations (5), (6), can be transformed to the 
equation for the longitudinal Fourier component of the 
electric field  

2
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2 2 2
0 0 0( ) , / , / , ( )⊥ = − = =k k k k v k cε ω ω ω ε ω  

is dielectric constant of an ion dielectric. On the perfect-
ly conducting side surface of the dielectric waveguide 
r b= , the longitudinal component of the electric field 
vanishes 

( ) 0zE r bω = = . 
We will search the longitudinal Fourier component 

of the electric field GzE ω  in the form of a series of Bes-
sel functions  

0
1
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∞

=

= ∑ ,               (8) 

where nλ  are the roots of the Bessel function 0 ( )J x . 
Using the orthogonality of the Bessel functions 

0 ( / )nJ r bλ , from equation (7) we find the expansion 
coefficients 
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Here 
2

2
1 ( )

2n n
bN J λ=  is wave norm. Accordingly, 

for the longitudinal component of the electric field we 
have the following expression 
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where 
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The dielectric constant of an ion alkali − halide die-
lectric can be represented in the form [4]  

( )( )( )
( )( )( )

2 2 2 2 2 2

2 2 2 2 2 2
( ) Li Le Le

Ti Te Te

ω ω ω ω ω ω
ε ω

ω ω ω ω ω ω
− +
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− − −
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The characteristic frequencies in relation (13) are ar-
ranged in magnitude as follows  

Ti Li Te Le Te Leω ω ω ω ω ω− − + +< < < < <  
Frequencies ( ),Li Leω ω ±  are zeros of dielectric per-

mittivity ( ) 0ε ω = . Frequency Liω  is the frequency of 
longitudinal optical phonons and lies in the infrared 
frequency range. Frequencies ( )Leω ±  are the frequencies 
of longitudinal polarized electron oscillations and lie in 
the optical or even ultraviolet frequency range. We also 
note that the frequencies Liω , ( )Leω ±  are also cutoff fre-
quencies for normal incidence of electromagnetic waves 
on a plane dielectric layer. In turn, the frequencies 

( ),Ti Teω ω ±  are the poles of the dielectric constant and 
determine the absorption lines of the electromagnetic 
waves of the ion crystal. In the vicinity of these fre-
quencies, the imaginary part of the dielectric constant 
and, accordingly, the energy loss of electromagnetic 
waves increases abnormally. 

The absorption frequency of ion subsystems Tiω  is 
the frequency of transverse optical phonons. We note 
that the optical longitudinal and transverse acoustic 
branches of the oscillations are characterized by the fact 
that in the unit cell of the ion crystal, oppositely charged 
ions are shifted towards each other. In this case, the cen-
ter of mass of the unit cell remains motionless. As in the 
case of longitudinal optical phonons, the frequencies of 
transverse optical phonons lie in the infrared range. 
Electronic resonance absorption frequencies are in the 
optical range. 

For the infrared range, the expression for the dielec-
tric constant (13) takes the form [5 - 7] 

( )
( )

2 2

2 2
( ) Le
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Te

ω ω
ε ω ε

ω ω
+

+

−
=

−
,                        (14) 

where                        
2 2

2 2
Le Le

opt
Te Te

ω ω
ε

ω ω
− +

− +

= , 

optε  is optical dielectric permittivity. 
The zeros of the dielectric constant are the poles of 

the integrand (12). Calculating the residues at the poles 
0,Li iω ω= ± −  we find the potential part of the Green's 

function 
2

( )
02

0

( , ) 2 ( , ) ( ) cosl Li
Gz Li Li Li

eff

E r dQ G k r k r
v
ω

t ϑ t ω t
ε

= , (15) 

0/Li Lik vω= , st opt
eff

ε ε
ε

ε
=

∆
, 

2

2
Li

st opt
Ti

ω
ε ε

ω
= , 

stε  is static dielectric constant, 
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0 0 0 0 0( , ) ( ) ( ) ( ) ( )k r k b I k b K k r I k r K k bα α α α α α∆ = − , 

Lik kα = . 
Note that the above relation for dielectric constant 

(14) implies the well-known Liddein-Sachs-Teller rela-
tion [5, 6] 

2

2
Li st

optTi

ω ε
εω

= , 

which determines the relationship between the frequen-
cies of longitudinal and transverse phonons through the 
values of static and optical permittivities. 

The integrand also has poles that are the roots of the 
equation 

22 2

2 2 2
0

( ) ( ) 0n
nD

c v b
λω ωω ε ω= − − = .       (17) 

Equation (17) determines the frequency spectrum of 
the radial harmonic with the number n  of electromag-
netic waves excited by the REB in ion dielectric wave-
guide. With respect to the square of the frequency 2ω , 
the spectrum equation (17) reduces to determining the 
roots of the quadratic equation. The frequencies ( )lfω



 
corresponding to the roots of this equation lie in the 
low-frequency microwave and infrared ranges. The 
spectrum equation (17) can be written as follows 

( )
( )

2 2
2 2

22 2
0

1 ,Li
opt n

Ti

ω ω
ω ε ω

βω ω

 −
 − =
 − 

        (18) 

where 0 0 / ,v cβ = /n nc bω λ=  is cutoff frequency of a 
vacuum waveguide of radius b . The roots of this equa-
tion are of the form  

( )2 2 4 4
( )

1 4
2nlf n n ngω ω ω ωΓ Γ= −



 .             (19) 

Here 

( )2 2 2 4 2 21 1,n Ti st n ng Ti n
opt opt

d
d d

ω ω ω ω ω ωΓ = + = , 

2 2
0 0,opt opt st std dε β ε β− −= − = − . 

For the frequency lfω + it is always lf Liω ω+ > , and 
for the frequency lfω −  we have lf Tiω ω− < . In the most 
interesting limiting case 

2 2
n Tiω ω<<                           (20) 

expressions for frequencies (19) are simplified  
2 2 2
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2
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2 2 2 ,nlf Ti nω ω+ = Ω + ∆                         (22) 
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∆ = ∆ = − . 

Frequency nlfω −  (21) is well known in the theory of 
wakefields excitation by REB in dielectric waveguides 
and resonators [1 - 3] and is in the microwave (te-
rahertz) range. The frequency nlfω +  lies in the infrared 

range and the process of wakefields excitation at this 
frequency, as it seems to us, has not been previously 
studied. For further analysis, the Fourier integral (11) is 
conveniently represented as 

( )
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22
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By calculating the residues in the poles 
0,nlf iω ω −= ± −  0,nlf iω ω += ± −  we find 
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where ( ) ( ) 0/nlf nlfk vω=
 

. Accordingly, for the low-
frequency (infrared) part of the electromagnetic Green 
function, we obtain the following expression  
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In the limiting case (20), the Green functions (23), 
(24) are simplified and take the form 
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g f
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We neglected the dependence (22) of frequency 
nlfω +  on the radial harmonic number, assuming that 

nlf Tiω + = Ω . In this case we can calculate the sums in-
cluded in expression (26). As a result, for the Green 
function ( ) ( , )t

zdE r t+  we obtain the approximate expres-
sion 

( ) ( )
0( , ) ( , ) ( ) cos ,t

z w T TidE r E G r rt ϑ t t+
+ = Ω          (27) 

0 0 0
1 1( , ) ( , ) ( , )T f f g gG r r G k r k r G k r k r
f g

= − . 

Expression (25) describes wake electromagnetic 
field excited by an infinitely thin electron ring bunch in 
ion dielectric waveguide in the microwave frequency 
range, in which there is no frequency dispersion of the 
dielectric constant. This expression for the wakefield 
coincides with that obtained in [1]. The exact expression 
(24) and approximate one (26) describe the excitation of 
wake electromagnetic waves belonging to a higher-
frequency infrared branch of the electromagnetic waves 
of ion dielectric waveguide. In approximation (20), the 
frequencies of these waves (22) are practically inde-
pendent on radial harmonic number. In this case, infra-
red electromagnetic radiation is excited much more effi-
ciently than microwave radiation. 

Thus, we obtained the Green function, which de-
scribes the longitudinal component of the wake electric 
field excited by a ring relativistic electron bunch in ion 
dielectric waveguide. The Green function contains the 
longitudinal (potential) and electromagnetic (vortex) 
parts. In the infrared range, the potential part is a field 
of longitudinal optical phonons. As for the electromag-
netic part of the Green function, it contains a set of radi-
al electromagnetic waves whose frequencies are in the 
microwave range, as well as electromagnetic radiation 
in the infrared frequency range. 

3. EXCITATION OF WAKEFIELDS  
BY AN ELECTRON BUNCH 

The resulting electromagnetic field ( , )E r t


 of the 
electron bunch (4) can be found by summing the fields 

GE


 of elementary electron ring charges (2). 
We first consider the excitation of longitudinal opti-

cal phonons. Using the potential polarization part of the 
Green function (14), we obtain the following expression 
for the wakefield of longitudinal optical phonons 

( ) ( , ) ( ) ( )l
z L L LiE r E r Zt ω t= Γ  ,              (28) 
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E Q
v
ω
ε
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The function ( )Z ωt  describes the distribution of the 
wake field at a frequency ω  in the longitudinal direc-
tion at each moment of time. We will consider an elec-

tron bunch with a symmetric longitudinal profile 
0 0( ) ( )T Tt t= − . The wake function ( )Z ωt is conven-

iently represented as 
1( ) ( ) ( ) cos ( ) ,
ˆ

Z T Xωt ϑ t ωt t
t
 = Ω − 


         (31) 

where , /b bt tω t tΩ = = , 

( )( ) cos ( )X sign T s s ds
t

t t t
∞

= Ω −∫ ,                (32) 

0

( ) 2 ( ) cos( ) , / .bT T s s ds s t t
∞

Ω = Ω =∫


      (33) 

The first term (31) describes a wake wave propagat-
ing behind the bunch. The amplitude of the wake wave 
is equal to the Fourier amplitude (33) of the function 
that describes the longitudinal profile of the electron 
bunch. The second term in (31) describes the bipolar 
antisymmetric pulse of the polarization field, localized 
in the region of the bunch. The field of this pulse tends 
to zero with distance from the bunch. 

Behind a bunch, the wake field (31) of longitudinal 
optical phonons has the form of a monochromatic wave 

( )
( , ) ( ) cos ,

ˆ
Li

Li L L Li
T

E r E rt ω t
t
Ω

= Γ


   Li Li LtωΩ = .  (34) 

We present the expressions for the Fourier ampli-
tudes ( )LiT Ω



 for two model longitudinal profiles of the 
electron bunch: Gaussian and power laws  

2 2 2
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0
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t π
t
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Longitudinal optical phonons are most efficiently 
radiated when the coherence condition is fulfilled 

1Li Ltω ≤ . If the inequality 1Li Ltω >>  takes place, then 
the longitudinal optical phonons are not coherently radi-
ated and the amplitude of the wake wave is exponential-
ly small. 

Let’s consider an electron bunch with a Gaussian 
transverse profile 

2 2/( ) Lr rR r e−= .                                (36) 
When the condition 1Lik b >>  is satisfied on the axis 
0r =  the function ( )L rΓ  takes on the value 

( )
2 21(0) ,

2 4
b Li b

L b b
k r

e Eiρ ρ ρΓ = − − = ,          (37) 

( )
z teEi z dt

t−∞

= ∫  

is integral exponential function. For thin 1bρ <<  and 
wide 1bρ >>  bunches the asymptotic representations 
for function (37) are 

1 1ln , 1,
2

(0)
1 , 1.

b
b

L

b
b

ρ
ρ

ρ
ρ

  
<<  

  Γ = 
 >>

 

Thus, with the full coherence of the Cherenkov radi-
ation of longitudinal optical phonons 1Li Ltω ≤ , 

1Li bk r ≤  the wakefield of optical phonons on the axis of 
the waveguide takes the maximum value 
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( , ) ln(2 / ) cos .Li L Li b LiE r E k rt ω t=          (38) 

where 
2

2
0

( , ) 2 Li
Li

eff

E r Q
v
ω

t
ε

= . 

We present the expressions for the amplitude of the 
wakefield on the axis of the waveguide LE  for two ion 
dielectrics of the alkali-halogen group: sodium chloride 
NaCl and potassium iodide KI. For sodium chloride, we 
have 

00.2 (V/cm)LE N= . 
Here 0 /N Q e=  is the number of electrons in the 

bunch. The frequency of longitudinal optical phonons is 
equal 127.62 10Lif = ⋅ Hz. For 11

0 10N =  from this for-
mula we obtain the estimation for the electric field 
strength 2LE = GV/cm. Accordingly, for potassium 
iodide we have 

00.11 (V/sm)LE N= . 
The frequency of longitudinal optical phonons and 

the electric field strength are equal 124 10Tif = ⋅ Hz, 
1.1LE = GV/cm, lower than in the previous case. 

Let us now consider the excitation of wake electro-
magnetic waves by an electron bunch. Using the elec-
tromagnetic Green function, we obtain the wake elec-
tromagnetic field as a superposition of radial modes  
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. 

For a symmetric electron bunch in the “wave zone” 
( ) 1nlfω t >>


, where the quasistatic field of the electron 
bunch is small, the wake field (39) is a superposition of 
radial modes of the dielectric waveguide 
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where 0 24
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QE
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= , ( )
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ˆ ˆ( )n nT T≡ Ω



 is Fourier com-

ponent (35) of the function ( )T s  at the dimensionless 
frequency ( ) ( )n nlf btωΩ =

 

. For an electron bunch with a 
Gaussian longitudinal (35) and transverse (36) profiles, 
the coefficients nΓ  and ( )

n̂T  , which are determined by 
the specific form of the transverse and longitudinal den-
sity profiles of the bunch, have the form 

( ) 2
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4n nT  = − Ω 
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n n bJ e d
η
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/b br bη = .  
When the condition 1bη <<  is satisfied, the expres-

sion for the coefficient nΓ  is simplified 

2 21exp
4n n bλ η Γ = − 

 
. 

If condition (20) is satisfied, we can use approxi-
mate expressions for the Green functions (25), (26). As 
a result, for wakefields excited by electron bunches with 
Gaussian longitudinal and transverse profiles, instead of 
exact expressions (39), we obtain approximate relations 
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If , 1f gk b >>  on the axis 0r =  the function ( )T rΓ  
takes the value 
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,   (43) 

2 2
,

, 4
f g b

f g

k r
ρ = . When , 1f gρ <<  we have instead of (43)  

1 2 1 2(0) ln lnT
f gf k b g k b

   
Γ = −      

   
. 

From expression (41) it follows that an electron 
bunch excites finite number of radial modes of micro-
wave radiation, for which the coherence condition 

2 2 2 21, 1nlf b n bt rω λ− ≤ ≤  for excitation by an electron bunch 
is satisfied. Since the condition 2 2 2/ 1Tib cΩ >> as rule is 
fulfilled, then the REB will primarily excite infrared 
radiation (42) upon its coherent excitation 2 2 1Ti btΩ ≤ . 

CONCLUSIONS 
In this work, the process of the excitation of Che-

renkov wake electromagnetic waves by a relativistic 
electron bunch in ion dielectric waveguide is studied. 
The ion dielectrics of the alkali-halide group are consid-
ered. In ion dielectrics of this group in the infrared and 
microwave frequency ranges, there are three branches of 
electromagnetic waves. Two of them correspond to 
transverse electromagnetic waves. In the infrared range 
there is also a branch corresponding to the optical longi-
tudinal phonons of an ion dielectric. For all these 
branches, analytical expressions for the wake electro-
magnetic field excited by a relativistic electron bunch 
were obtained and studied. The frequency spectrum and 
the spatio-temporal structure of the Cherenkov wake-
field are determined. It is shown that in the infrared 
(microwave) frequency range the excited wake electric 
field consists of potential field of longitudinal optical 
phonons and a set of eigen electromagnetic waves of a 
dielectric waveguide.  

The frequency spectrum and the spatio-temporal 
structure of the Cherenkov wake field are determined. It 
is shown that in the infrared (microwave) frequency 
range the excited electric field of the wakewaves con-
sists of potential field of longitudinal optical phonons 
and the set of eigen electromagnetic waves of an ion 
dielectric waveguide. 

REFERENCES 
1. V.A. Balakirev, N.I. Karbushev A.O. Ostrovsky, 

Yu.V. Tkach. Theory of Cherenkov amplifiers and 
generators based on relativistic beams. Kiev. “Nau-
kova Dumka”, 1993, 207 p. 



ISSN 1562-6016. ВАНТ. 2019. №6(124) 52 

2. V.A. Balakirev, I.N. Onishchenko, D.Yu. Sidorenko, 
G.V. Sotnikov. Chardge particle accelerated by 
wakefields in a dielectric resonator with exciting 
electron bunch channel // Technical Physics Letters. 
2003, v. 29, № 7, p. 589-591.  

3. V.I. Maslov, I.N. Onishchenko. Transformation ratio 
at wakefield excitation in dielectric resonator by 
shaped sequence of electron bunches with linear 
growth of current // Problems of Atomic Science and 
Technology. Series “Plasma Electronics and New 
Methods of Acceleration”. 2013, № 4, p. 69-72.  

4. V.A. Balakirev, I.N. Onishchenko. Cherenkov radia-
tion of a laser pulse in ion dielectrics // Problems of 
Atomic Science and Technology. Series “Plasma 
Electronics and New Methods of Acceleration”. 
2019, № 4, p. 39-47. 

5. M. Bourne, H. Coon. The dynamic theory of the 
crystal lattice. M.: “Foreign literature”, 1958, 488 p. 

6. J. Slater. Dielectrics, semiconductors, metals. 
M.: “Mir”, 1969, 664 p. 

7. N. Ashkfort, N. Merlin. Solid State Physics. M.: 
“Mir”, 1978, v. 2, 392 p. 

Article received 22.10.2019     

ЧЕРЕНКОВСКОЕ ИЗЛУЧЕНИЕ РЕЛЯТИВИСТСКОГО 
ЭЛЕКТРОННОГО СГУСТКА В ИОННОЙ ДИЭЛЕКТРИЧЕСКОЙ СРЕДЕ 

В.А. Балакирев, И.Н. Онищенко  
Исследован процесс возбуждения Черенковского электромагнитного излучения релятивистским элек-

тронным сгустком в ионном диэлектрическом волноводе. Получена и исследована пространственно-
временная структура кильватерного поля в ионном диэлектрическом волноводе. Показано, что возбуждае-
мое кильватерное поле в инфракрасном диапазоне и больших длинах волн состоит из поля продольных оп-
тических фононов и набора собственных электромагнитных волн диэлектрического волновода. 

ЧЕРЕНКІВСЬКЕ ВИПРОМІНЮВАННЯ РЕЛЯТИВІСТСЬКОГО 
ЕЛЕКТРОННОГО ЗГУСТКА В ІОННОМУ ДІЕЛЕКТРИЧНОМУ СЕРЕДОВИЩІ 

В.А. Балакiрєв, I.М. Онiщенко  
Досліджено процес збудження Черенківського електромагнітного випромінювання релятивістським еле-

ктронним згустком в іонному діелектричному хвилеводі. Отримана і досліджена просторово-часова струк-
тура кільватерного поля в іонному діелектричному хвилеводі. Показано, що збуджене кільватерне поле в 
інфрачервоному діапазоні і більших довжинах хвиль складається з поля поздовжніх оптичних фононів і на-
бору власних електромагнітних хвиль діелектричного хвилеводу. 
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