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We consider a motion of a relativistic electron beam in a spatially periodic magnetic field of an undulator taking
into account the influence of the spontaneous radiation fields on this motion. The diffusion coefficients in longitudi-
nal momentum of electrons are found. It is shown that in initially monoenergetic electron beam a mean square
spread due to influence of the incoherent fields on electron motion may have a predominant effect compared with

the spread caused by the quantum fluctuations.
PACS: 41.60.-m, 41.60.Cr, 52.25.Gj

INTRODUCTION

Charged particles, moving in a spatially periodic
static magnetic field of undulator, radiate electromag-
netic waves. Self amplification of these waves in a beam
of ultrarelativistic electrons is the physical mechanism
underlying operation of a X-ray FEL [1 - 4]. In such
devices a high density electron beam should have small
energy spread. At the initial stage of the stimulated radi-
ation formation in a FEL, in a spontaneous radiation
mode, the electrons radiate independently. The influ-
ence of this incoherent field on the electrons motion
leads to the increase in momenta spread of electrons [5].
This effect is connected with the discrete structure of
the electron beam and is described by pair interaction of
the particles through the electromagnetic fields created
by them. The investigation of the momenta spread in the
electron beam which is monoenergetic at an undulator
entrance, is curried out in [5].

In the present paper the expressions for the diffusion
coefficient in a longitudinal momentum for the beam of
ultrarelativistic electrons with initial longitudinal mo-
mentum spread at the undulator entrance are obtained.
The numerical calculations of the equations describing
increase of momentum spread in an initially monoener-
getic ultrarelativistic electron beam and the comparison
of this spread with the spread caused by the quantum
effects are presented.

1. THE BASIC EQUATIONS

We consider helical undulator with magnetic field
H, = Hyle, cos(k,z)+e, sin(k,z)], (1)

where k, =2n/),, Hy and A,

period of magnetic field, e, e

are the amplitude and

, are the unit vectors

along axes x and y of the Cartesian system of coordinates.

Let the relativistic electron beam with average densi-
ty n, cross the plane z=0 and move in the positive direc-
tion of the axis z. The equations of longitudinal motion
of an individual electron in the field of undulator and
the fields created by other electrons of a beam take the
form:

dpz1_zF [ ()tx] (2)
Fz(S)(X, t; -xj)z e{Ezv (xs t; xs)+_[v Hs(x’ t; xS )]z }’ (3)
c

where p,=mv,y, F, O(x,t;x5) is the longitudinal
component of the pair interaction force of two electrons,
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m is the mass of electron, x={r,, p;} is the set of the

coordinates and momentum of s-th electron, E; H are

the electric and magnetic fields produced by an individ-
12

ual electron (s-th) in the undulator, y = (l - BZT/ , C s

the velocity of light, e is the electron charge.

The diffusion coefficient in the longitudinal momen-
tum, caused by the interaction of electrons through the
electromagnetic fields created by them, is [5]:

D. = 2d<Apz, > jdr jF

-1 ’qOS )]X (4)

)£5x, (£ g0, )]

><FZ(5 [xi(t—'c ),r ;xs(t

X f(ps )st (tOs )qus >

where qu:(pss X0s> Yos» tOs)a quS:dpstOdeOSdtOSs T=t-toi,
fis the distribution function of electrons, x; = (r;,p;).

In the case of small undulator parameter K? <<1 the
expression for the longitudinal components of the force
acting on i th electron in the field of s th electron is

[ 2 2
FZ(S)(riat;q()s):_ eKku YV/YZ) %
Bspgi

kOSR*
Az .
X B? + St _
l[ C R kg Ry
(B N jcosw
ko R
R :V(Azsi)z +Pf~i/Y§o )

2
Vi (t_tOS )’ Psi = |rJ_i _rJ_s| > kOs = BSYZSku ’
B=v/c, symbol "L" denotes the vector perpendicular

to axes z, K=|e|H0/(mczku), Y, :yo/\/1+K2 .

The integration limits in the equation (4) are defined
by both the time of front propagation of radiation field
from s th electron and the beam size

AZI?J’_ﬂt((AZ)ft +pv21/}/vz)l/2 SZ/]/IZ

(xfx + yéx )1/2 <r
Here we assume that the beam is continuous cylin-
drical with radius r, and the coordinate z is chosen as an
independent variable.
Let's assume that the distribution function of elec-
trons at the undulator entrance (z=0) is:

Jsin\u+ , (5)

where 1 =kuY§S(AZsi +BSR*)’
Az, =z, —

si i

) (6)
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floy) = S(M)GXP{—M},

V21py, 2p t2h
where p, is the initial thermal spread in the longitudi-

nal momentum.

We will take into consideration the radiation fields
of electrons (s-th) emitted in the direction of the beam
motion and find diffusion coefficient in the momentum
for electrons moving near the axis r,,, =0.

Depending on the initial distribution in momenta of
electrons it is possible to separate two stages of the pro-
cess of the momentum spread increase in a beam mov-
ing in the undulator.

With the distances z << 4,p_,/p, the influence of

thermal spread in momentum in the beam can be ne-
glected [6]. In this case the motion of electrons in undu-
lator occurs under the influence of pair interaction forc-
es which do not depend on the distance z. At this stage
the diffusion coefficient, at z>> r,y,,, takes the form

[5]:

D, =n*e* K n klry.o2/v. , (8)
and the mean square value of the longitudinal momen-
tum spread increases proportionally to a distance square

((ap.)0) =2 (me} 2mpiy oK (k,2F . (9)

where r, = ez/(mcz).
In the opposite limiting case of greater distances
z>>A,p.,/p, the motion of particles is random and,

consequently, the diffusion coefficient in the momen-
tum does not depend on the distance covered by the
beam [6]. Substituting the expressions for the force (5)
and the distribution functions (7) in the equation (4) and
integrating into this equation on initial coordinates of
electrons, satisfying the equation (6), we can obtain the
following asymptotic formulas for the diffusion coeffi-
cient in momentum space:

D.(p.)=nPN2e Kk, ryy.0 2222 (10)
z Pw
at |p. _p20|<< p, and
2
Dz(pz)=3ne4K4 ”_b[ Y z0Pz0 J . (1D
\& Z(pz_pZO)
at |p, —p.o|>> Py -

In this case the mean square spread in momentum
will increase proportionally to the distance in the first

degree <(ApZ )2> ~Z.

As for ultrarelativistic particles the momentum
spread is related to the energy spread by:

<(Apz )2> =m? Vﬁ <(Ay)2> , then the growth of momen-

tum spread corresponds to the growth of the energy
spread in a beam.

2. NUMERICAL SIMULATION

For the realization of self amplification of spontane-
ous emission in an X-ray FEL it is necessary, that at the
entrance of the undulator the electrons had small energy
spread, i.e. were monoenergetic. Therefore we will con-
sider the change of a mean square spread in momenta of
electrons in such a beam, assuming that
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S(p)=n,8(p 1, B(p-y = pog) at 2=0. The Eq. (4) with
such distribution function and with pair interaction force
(5) will have the form

((ap. ) = anlmer Kk, 30 /13 my
/2 P () ;

z (12)
xjdz'(z—z’)_[desine Idrgz(r',e)
0 0 0

where g=|PB,y +0cos 60— Ezoz —lﬁzosinze sin y +
kor's 2

Az
+(Bq + cos G)iﬂ, ' =R., 0= arcctg[yzo—“j,

’
o’ Psi

v =120k, (B +cos6).

The limits of integration are defined by Eq. (6).

Figs. 1, 2 show the result of the numerical calcula-
tion of the Eq. (12). Calculations are carried out for the
following parameters of the beam: peak -current
I,=4 kA, 1,=70 um and the undulator Hy=0.15T,
A=3 cm. In the Fig.1 the normalized mean square
spread in momentum of electrons

<(Ay)2>= <(A Z)z > / (mc)2 is plotted as the function of
the distance covered by them in undulator for several
wavelength values of radiation A=A, / (2y§0). The
curves 1, 2 and 3 correspond to the value of the initial
energy of electron E; = mczyo: 9.6, 6.79 and 5.54 GeV,
respectively.
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Fig. 1. Spatial evolution of the normalized energy.
spread for various radigtion wavelengths (1) 0.5 4,
(2)14,3)154
The dependences of energy spread on coordinate z
have been calculated up to values equal z,, =4, /pyp ,

100 120 140 160

which correspond to a saturation length in a FEL, where

13
oy =L Kl
N R T '

Fig. 1 shows that the momentum spread increases as
the function of distance along the axis z and that the
energy spread increases with the growth of electrons
initial energy.

When a charge moves in an undulator their energy
spread can also increase because of quantum fluctua-
tions [7]. In the case of K <<1 it is possible to present
the value of this spread in the form

((av)iy )= %%cv“kazz,
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where X . =h/mc.
Using the formula (9) we will write down

<(A7/)fud> _lS_;ra KA1, n,

zZ, (14)

- 3
((ar)) 28 Vivkrv
v, 62 3 .
where a = =—=7.297 -10" is the fine structure
. hc
constant.
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Fig. 2. Ratio of energy spread obtained from the simula-
tion and energy spread due to quantum fluctuations ob-
tained from Eq. (13) as a function of the interaction dis-
tance. The curves 1, 2 and 3 correspond to the value
of the radiation wavelength 0.5, 1 and 1.5 A, respectively

Although quantum fluctuations increase proportion-
ally to the fourth degree of electron energy, the energy
spread due to radiation interaction of electrons in a
dense beam may be greater than the spread caused by
quantum fluctuations.

Fig. 2 presents spatial evolution of the ratio of the
energy spread obtained from the numerical simula-
tionof Eq.(12) and the energy spread caused by the
quantum fluctuations of the radiation obtained from the

Eq. (13). Fig. 2,b presents the plot of the initial seg-
ments of the same curves as in Fig. 2,a. It is seen from
Fig. 2 that the growth rate of the energy spread due to
radiation interaction of electrons is more than the
growth rate of the energy spread caused by the quantum
fluctuations. If the distance z is too small, quantum ef-
fects will become important.

CONCLUSIONS

In this paper the influence of incoherent fields of
spontaneous radiation on the mean square momentum
change of electrons at spontaneous emission mode are
examined. It is shown that the mean square longitudinal
momentum spread of electrons due to classical (non-
quantum) radiating effects, as well as the energy spread
of electrons, increase when the electron beam moves in
undulator. From the presented calculations it follows, that
in the initially monoenergetic electron beam the growth
rate of the energy spread due to the radiation effect is
greater than the growth rate of the energy spread caused
by quantum effects. Thus, the influence of incoherent
fields of spontaneous radiation of electrons on their mo-
tion in undulator leads to the increase in the energy
spread in the electron beam and can hinder the decrease
of coherent radiation wavelength in a X-ray FEL.
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KO3PPUIMEHT TUPPY3UU 11O UMITYJIBCAM B IIOTOKE PEJIITUBUCTCKHUX SJIEKTPOHOB B OHAYJISITOPE
B.B. Oznueenko
PaccMoTpeHO ABMKEHHE YIBTPAPESITHBUCTCKOTO SJIEKTPOHHOTO My4Ka B MPOCTPAHCTBEHHO-IIEPUOIMYESCKOM MAarHUTHOM IOJIe
OHJTYJISITOpA C YYETOM BIMSIHUS HOJICH CIOHTAHHOTO M3Ty4eHHUs Ha 9TO ABIKeHHUe. [1oydeHo BBIpaKeHHEe TSl IPOIOIBHOr0 Kodb-
¢ummenta nuddysun. IlokaszaHo, 4To B MepBOHAYATIEHOM MOHOJHEPreTHYECKOM JIEKTPOHHOM IIOTOKE CPEAHEKBAAPATHUYHBIN pas-
Opoc, 00YCIIOBICHHBI BIMSHAEM HEKOI'CPEHTHBIX TOJICH CIIOHTAHHOTO W3IIy4EHHS Ha JIBIDKCHHUC DJICKTPOHOB, MOXET IMPEBBIIATH
pazbpoc, 00YCIOBIICHHBIIT KBAHTOBBIMH (ITyKTYaIASMH.

KOE®ILIEHT IU®Y3Ii IO IMIIYJIbCAX Y HOTOILI PEJATUBICTCHKHUX EJEKTPOHIB B OHIYJISITOPI
B.B. Oznigenko
PO3IIISIHYTO PyX yJbTPapENsSTUBICTCHKOTO €IEKTPOHHOTO IIy4Ka B IPOCTOPOBO-IIEPIOANYHOMY MarHiTHOMY I10JIi OHIYJIATOpa
3 ypaxyBaHHSM BIUIMBY MOJIIB CIIOHTAHHOTO BUIIPOMIHIOBaHHs Ha Lei pyx. OTpuMaHO BUpa3 Ul HO3I0BKHBOrO KoedilieHTa
audysii no immynscax. [TokasaHo, O B MOYaTKOBOMY MOHOEHEPI€THYHOMY €JIEKTPOHHOMY IIOTOLI CepeiHbOKBaJPaTHYHUN
PO3KHJ, 00yMOBIICHHI BIUIMBOM HEKOT'€PEHTHHUX II0JIiB CIIOHTAHHOTO BUIIPOMIHIOBAHHS Ha PyX €JIEKTPOHIB, MOXKE EPEBHILlyBa-
TH PO3KHUJI, 00yMOBIICHHI KBAHTOBUMH (DIIyKTyaLlisiMH.
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