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The procedure for obtaining a difference equation, the solution of which is the components of the electric (or
magnetic) field at the chosen set of points in the volume of the resonator chain, was developed. We started with the
wave equation with boundary conditions and obtained the difference equation without boundary conditions. Bound-
ary conditions were included into the coefficients of the difference equation for the electric field. As the obtained
equation connects the field values in different points (in general case, on an infinite set of points), the proposed pro-
cedure represents a nonlocal model for field description. Solutions of the difference equation for the electric field
were analyzed. It was shown that they coincide with good accuracy with the ones that were obtained by direct sum-

ming of relevant series.
PACS: 41.20.Jb; 84.40.Az

INTRODUCTION

In the frame of the Coupled Cavity Model (CCM)
the electromagnetic field in each cavity of the chain of
resonators is represented as the expansion with the
short-circuit resonant cavity modes [1 - 13]

EO =3 e EX (), (1)
q

where e/ —amplitudes of the ¢ modes, ¢ ={m,s,n} .

For a long time, the most used models were based on
the assumptions that if @ ~ @, (."'- the eigen frequency

of the short-circuit k —cavity mode) only one term with
q = q, inthe expansion (1) can be taken into account
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and the RF coupling of a k —cavity can be restricted to
two (k +1,k —1) neighboring resonators
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where @ - eigen frequencies of these modes.

Rejecting this assumption and considering all mem-
bers of the expansion (1), such coupled equations for
*)

e,’ can be obtained under choosing the mode ¢ =g,

as the basic one [11, 14 - 16]

AR (k)

O ﬂ

T @
Here Z\V =1-0’ / 0}, a;:;n) — real coefficients that
depend on both the frequency @ and geometrical sizes
of all resonators.

The CCM is a kind of decomposition approach in
the study and development of complex electrodynamic
systems [17 - 19].

Sums in the right side of (4) can be truncated

Zpe = 3 el ®
Jj=k-N

In the frame of the CCM the coupling coefficients

.1 are electrodynamically strictly defined for arbi-
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trary N and can be calculated with necessary accuracy
[11, 14 - 16]. In the theory of RF filters the coupling
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matrix circuit model is used intensively (see, for exam-
ple, [20] and cited there literature). The main problem is
how to calculate the matrix elements.

Amplitudes of other modes (¢ # ¢ ,) can be found

by summing the relevant series
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Electric field in the resonator can be calculated as
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where 7 e V®, V™™ is a part of chain space which be-
longs to the & -th resonator.

The set of coupling equations (5) can be considered
as a difference equation. This difference equation,
which defines the amplitudes of the basic modes e, is
the main equation of the CCM.

It is reasonable to note that the amplitudes of the
basic modes e‘k) are non-measured values. Indeed, we

can measure the components of electric field in any
point, for example, by the nonresonant perturbation
method [21 - 23], but we cannot measure the amplitudes

el and have to use numerical methods for finding

them by using the expansion (1). This circumstance
creates difficulties in studying the properties of the real
slow-wave waveguides, including their tuning [23, 24].
The similar situation arises also in other electrodynamic
models. For example, the space harmonics in the
“waveguide” model of homogeneous periodic wave-
guides [25] are non-measured values, too.

If we choose the set of points 7#*) which belongs to
the volumes of different resonators (for example,

k-1
r=0, 29 =3%"d +d,/2), we can consider any compo-
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nent of the vectors E® (7)) (7) as the sequence of
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complex numbers each of which are the sum of several
values of grid function that is the solution of the known
difference equation. Can we construct a new difference
equation the solution of which will be the components
of the electric field at the given points of different reso-
nators?

1. THE EQUATION FOR THE ELECTRIC
FIELD IN THE INFINITY CHAIN
OF RESONATORS SECTION

We can rewrite equations (5) and (7) as
(k. k+s) (k)
a - Zqo 55,0 )

(k+s) ( 9090
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— Z e(([ic+s)a(k,k+s) =0 ,(8)
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where E“(7*") are the g -component of electric field
at 7 =7".

Using the results of Appendix 2, we get the differ-
ence equation for £, (") [26]

N
Z hkwng(kJrs) (F(k+s)) =0.
s=—N

Here H" :(hk’fN,...,hkﬁl,hk)l,...,hk,N)T are the solu-
tions of systems of linear equations
wOHD +wPHP =-B,.  (11)
Matrices W, w® B,,H” are defined in in Ap-
pendix 2 A, =1.
It should be noted that the coefficients 4, in the

(10)

equation (10) also depend on the set of points
;;(k*N) , ?"(k*N‘Fl) e ;;(k) , "j;(kJerl) , ;:(k*N) .

The solution of the difference equation (10) gives
magnitudes of electric field component £, (7*) in a

fixed set of points 7#*' .

For a homogeneous waveguide from the equation (10)
we can get a polynomial characteristic equation [27].

N
Z hp'=0.
s==N

2. SOLUTIONS OF THE DIFFERENCE
EQUATION FOR THE ELECTRIC FIELD

We have added to the CCM codes [15, 16] proce-
dures for finding the solutions of systems of linear equa-
tions (11) and the solutions of the difference equation

*) (706
for E,(7™) (10).
The procedures of calculation of the coefficients

(k,k+s)
q0-490

were presented earlier [15, 16]. Let’s consider the de-
pendencies of the coefficients B\ (7") on parame-

(12)

a and its dependencies on parameters of the DLW

ters of the DLW. Below as the set 7, we will consider

k-1
the cavity centers for which r=0, z" = Z d +d, /2.

As the basic mode we choose the mode ¢, =(0,1,0).
We also restrict our consideration by the case
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®) (700y _ () (k)
EV(F)=E""(F"). For homogeneous DLWs we
define that E) (7)=1.

For homogeneous DLWs with the same phase shift
per cell ¢ =27/3 but different aperture sizes S "

are presented in Table 1.
Table 1

ﬂ;k’k”)‘ for homogeneous DLWs with the phase shift
percell p=2x/3, f =2856 MHz, d =3.0989 cm,

t=04cm, r,=0
P a=1.6 cm, a=13cm, a=1cm,
b=42343cm| b=4.1406 cm | b =4.0754 cm

-3 1.67E-06 1.98E-07 9.06E-09
-2 | -2.94E-04 -8.78E-05 -1.48E-05
-1 6.32E-02 4.52E-02 2.70E-02
0 8.16E-01 8.45E-01 8.86E-01
1 6.32E-02 4.52E-02 2.70E-02
2 -2.94E-04 -8.78E-05 -1.48E-05
3 1.67E-06 1.98E-07 9.06E-09

First of all, we have to note that the RF coupling
leads to significantly changes in field distribution in
compare with the one that gives formula (2). Indeed,

ﬂz(k’k) significantly differs from 1 even for small aper-

tures (@ =1 cm). This circumstance is especially im-
portant for the case of inhomogeneous DLWs.

As follows from Appendix 2, in the case of homoge-
neous DLWs the coefficients of the difference equation
(10) A, (s#0,h,,=1) must to be equal the coeffi-

_ —(k.k+s) _
s =g Re

cients of the difference equation (8): /4
sults of calculations that are presented in Table 2 confirm
this fact. For DLWs with varying geometrical sizes the

difference between the coefficients /, = and 5;:’;‘0”) are

determined by the values of parameter gradients.
Table 2
Homogeneous DLWs with the phase shift per cell
¢=2r/3, f=2856 MHz, d =3.0989 cm,

t=04cm, 7,=0, a=1.6cm, b =4.2343 cm

s . e
-3 3.06E-05 3.06E-05
-2 -5.44E-03 -5.44E-03
-1 1.01E-00 1.01E-00
0 1.00E-00 1.00E-00
1 1.01E-00 1.01E-00
2 -5.44E-03 -5.44E-03
3 3.06E-05 3.06E-05

Let consider the more complicated DLW — the bi-
periodic DLW with such geometric sizes:

cells A: d=39484cm, ¢=04cm,
a=1.5cm, b=4.1329 cm;

cells B: d=0.5cm, t=04cm, ,=0, a=1.5 cm,
b= 44712 cm.

For N =3 coefficients A", @, b

( f =2856 MHz) are given in Table 3.1 and Table 3.2.
We should like to note that the value of electric field in

1, =0,
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the cell of B type are mostly determined by the three
amplitudes of E;,, modes in the adjacent cells, while in

cells of A type — mostly by the one amplitude (compare

,B;k’k”) in the second columns).

Table 3.1
Coefficients for cells A
k. k+s —(k,k+s
° ﬂég : q(O»qo : hk’s
-3 -7.39E-05 -5.23E+01 | 3.14E-02
-2 1.04E-02 7.33E+03 -2.77E-00
-1 2.12E-02 1.80E+04 -2.86E+01
0 8.84E-01 1.00E-00 1.00E-00
1 2.12E-02 1.80E+04 -2.86E+01
2 1.04E-02 7.33E+03 -2.77E-00
3 -7.39E-05 -5.23E+01 | 3.14E-02
Table 3.2
Coefficients for cells B
k,k+s —(k,k+s

S A o fes

-3 -6.37E-04 -7.57E+02 1.15E-01

-2 -1.86E-03 -2,12E+03 9.33E-01

-1 2.66E-01 2.97 E+05 -1.70E+01
0 2.48E-01 1.00E-00 1.00E-00

1 2.66E-01 2.97 E+05 -1.70E+01
2 -1.86E-03 -2,12E+03 9.33E-01

3 -6.37E-04 -7.57E+02 1.15E-01

It can be seen that the coefficients 5;:‘::0”’ and &

k,s
are quite different. However, these different coefficients
give the same dispersive characteristic. Indeed, the
characteristic equation ( £ g(k”) =pE g(k)) for the differ-

ence equation of « -type (8) or h-type (10) has the
same form ( N =3)

P 4P +4,p + 4,0’ +q,p’ +qp+1=0. (13
Results of calculations of the coefficients ¢,,4,,q,
for the difference equations of « -type (with using

@ k) and h-type (with using , ) show that their

difference is small and the characteristic multipliers for
these two types of equations coincide. For example, the
suitable multipliers p for several frequencies are given
in Table 4.
Table 4
Solutions of the equation (13)

S (GHz) P, Py

2.856"  [(-1.00098.i0.00000) [ (-1.00098,i0.00000)
(-0.99902,i0.00000) | (-0.99902,i0.00000)

2.857 (-0.99891, (-0.99891,
i4.65892E-02) i4.65842E-02)
(-0.99891, (-0.99891,
-i4.65892E-02) -i4.65842E-02)

2.86 (-0.98902, 10.14775) | (-0.98902, i0.14775)
(-0.98902,-i0.14775) | (-0.98902,-i0.14775)

'The SUPERFISH gives two frequencies for 7 -
mode: f =2856.38 MHz, f =2856.09 MHz
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Analyzing the obtained results we can conclude that
the new difference equation for the electric field val-

ues £, (7)) in the case of homogeneous periodic

waveguide gives the same (up to calculation errors) dis-
persive characteristic as the difference equation for the
amplitudes of E,, modes.

Consider the accuracy of the description of the dis-
tribution of the electric field based on the difference

equation for the electric field values E g(k '#*) (10).

On the base of the coupling equations (5) or (10) we
can study the processes of wave propagation in inhomo-
geneous segments of DLWs [15, 16]. It can be done if we
suppose that before and after the inhomogeneous segment
of DLW there are the homogeneous segments of DLW
(input and output waveguides). In homogeneous seg-
ments at sufficient distance from the connection interfac-
es (when all evanescent waves decay) we can search the
solution of the difference equation in the form

exp{igolyo (k—k, )} +
£ = R, exp{—igol’o (k—k )} sk <k, (14)
T, exp {iq)z,o (k —k, )} , k>k,,
where R,,T, are the reflection and transmission coeffi-
cients.

Injector sections are usually the DLW with geomet-
rical sizes that provide changing along structure not
only phase velocity, but the amplitude of accelerating
field too. We chose geometrical sizes close to the param-
eters of the injector that described in [28]. Dependences
of the radii of apertures and the cavity length on the cell
number are presented in Fig. 1 (#=0.4 cm, R, =0).
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Fig. 1. Dependences of the radii of apertures

and the cavity length on the cell number
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Fig. 2. Solutions of difference equation (10) (1-\E, ,|)
and the difference equation (5) (2—\E, ,|)

From the Fig. 2 we can see that in the case of signif-
icant inhomogeneity the solutions of difference equation
(10) (1—|En)h|) and the difference equation (5)
(2-|E,,
of longitudinal electric field |E

n,h

) differ significantly. But the absolute values
| and the values calcu-
lated on the base of sum (7) coincide with good accura-
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cy (Fig. 3). The same is true for phases. Therefore, the
difference equation (10) can be used for direct calcula-
tion of the electric field distribution. The difference
equation for the magnetic field can be obtained by
changing the coefficients %) (7) in the sum (7).

1.E-06
= 9E-07
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7E-07 .
6.E-07

X AAEAXEX RN X XN
.

the sum (7)

5E-07 esevccee®

4 E-07
10 15 20 25 30 35 40

Cell number
Fig. 3. Difference between absolute values
of longitudinal electric field |En!h|

fference between | E, |

and |E,|

D

and the values calculated on the base of sum (7)

CONCLUSIONS

We constructed a procedure for getting a difference
equation, the solution of which is the components of the
electric field at the given points of the resonator chain.

Let’s follow again the main stages of getting this
equation. We started from decomposing the considered
region of space into simple regions, found solutions of
the Maxwell equations in the form of an infinite series
with unknown coefficients that partially satisfy the
boundary conditions, used additional boundary condi-
tions and constructed a difference equation for some
unknown coefficients. Then we constructed a difference
equation for electric field components in some points.
To find the values of the electric field, we must solve
this equation already without any boundary conditions
at the boundaries of the considered region. We started
with the wave equation with boundary conditions and
obtained the difference equation without boundary con-
ditions. Boundary conditions were included into the
coefficients of the difference equation for the electric
field. As the obtained equation connects the field values
in different points, the proposed procedure represents a
nonlocal model for field description.

The proposed technique has several drawbacks. One
of them is the necessity to define initial values of the
electric field at the given points of the considered region.
To eliminate it the procedure must be generalized to a
finite number of resonators. The second one is the neces-
sity to work with ill-conditioned matrices. In the Coupled
Cavity Model it is assumed that the coupling coefficients
decrease rapidly with increasing distance from the given

resonator @ “**Y ——0 . Therefore, in the proposed
q0-90 50

technique we have deal with numbers that vary greatly in
magnitude. Presented above results show that we can, at
least in some cases, get fairly accurate values of field
parameters. This problem requires more study.

The advantages of working with field values are ob-
vious. We can perform more accurate synthesis of the
electromagnetic field distribution in a chain of coupled
resonators [29] and their tuning [24, 30]. We can also
study the characteristics of the wider class of inhomo-
geneous waveguides by decomposing them into the
chain of coupled resonators.
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The developed computer codes can be applied for
cylindrical geometries for which there are analytical
expressions of the eigen functions. The area of using the
proposed approach is wider as there is the general
method that gives possibility to obtain the coupling co-
efficients for arbitrary chain of resonators without using
the great number of eigen functions [31].

APPENDIX 1

Consider an overdetermined linear system of equations

M
Sy =rf1Sn<M+1. (15)

s=1
We shall suppose that all equations are independent
and such system

M
ZVn,syS =f,1<n<M
s=1

is consistent. We introduce the set of fundamental solutions

M
D VasVek =0, 1Sk<SM, 1<n<M, (17)
s=1

(16)

or in matrix form
ry=1, (18)
where I" and Y are the matrices of M xM size,
(T), =7, »(¥), =y o 1SksSM, 1<n<M.
) n,s n,s n,s

The solution of the system (16) can be represented in
the form

M
Vo= [V 1Ss<M. (19)
k=1

Substituting this expression in the last equation
(n=M +1) of the system (15), we obtain a relation to
which the right-hand sides of the system (15) must satisfy

M+1
n=1
where £,,,, =-1 and
M
h":Zys,717M+l,59 ISnSM (21)

s=1
Using the above approach, for calculation the coeffi-
cients %, we have to solve M linear systems of equa-

tions (17). There is another method of calculation of

these coefficients. From
Ommnoka! UcTouHuk cchliIkM He HaliaeH. it follows
Yr’'=1- i;/s,ny,m = §k,n . (22)
Consider M linear forn;:
i}/,,,xhn, 1<s<M. (23)

n=1

Substituting (22) in (23), we get
M M M M M
Zyn,shn = ZZyM+l,k7/n,syk,n = Z}/Mﬂ,kzyn,syk,n (24)
k=1

n=l1 n=1 k=1 n=1

Using (22), we obtain

M
zyn,shn :7M+1,55 1SSSM’

n=l1

(25)

or in matrix form

I"H=F, (26)
T

where H =(h,,...,h, )T,F:(;/MH,],...,)/MH’M) .
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This is the system of linear equation solution whose
solutions are the sought coefficients 4, 1<n <M .

It is followed from (20) that one element of the se-
quence {h} is the arbitrary one. The system (25) corre-
sponds the case when 4,,,, =—1.

If we want to consider another element 4, of the se-

quence {// as given, we have to change the equation (25)
M+1

D Vs = v e 1SS <M

n=l,n#K

@7

APPENDIX 2

For infinitely long chain the main set of coupled
equations for amplitudes y, ( —oo <n <o) we write as

M
Z an‘n-#.\'yn-#.\' = 0 N
s=—M

The additional parameters f, are the sum of the

(28)

nearest amplitudes

M
z ﬂn,n-mynﬂ' = f;q N

s=—M
Let’s consider the interval N<n<N+N,. What

value of N, have we to choose for obtaining the differ-

29

ence equation for the elements of the sequence f, ? This
can be done if the number of equations N, =2(N, +1)
will be greater by one than the numbers of unknowns
N, =(N,+1)+2M . This condition gives
N,=N,+1 >N, =2M. (30)
Indeed, in this case we can find N, =4M +1 un-
knowns from N equations. Substitution them into the
last equation gives the relation between N, +1=2M +1
elements of sequence {f,}. It can be considered as a
difference equation for f,.

It is convenient to consider the interval
N—-M <n<N+M. Then the system of equations that
can be transformed into the difference equation for the

sequence {f,} take the form (N —n)

M
Z ﬂ)l—M,n—M+.vyn—M+s = fom
s=—M

M
z ﬂn+M,n+M+syri+M+S = f;wM
e . 31)

M

Z an—M,n—M+.vy)1—M+s = O

s=—M

M
z an+M,n+M+syn+M+s = O

s=—M

Using the results of the Appendix 1, we get the dif-
ference equation for f,

M
> by Sy =0. (32)
s=—M ’

Here i, (—-M <s<3M +1, s#0) are the solutions of

n,s

such systems of linear equations
W g @@ _

Wz Hn +VVn Hn =-B,h

n"'n,0 2

(33)
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where H\" =(h, ...k

By By e By, )T is the vector of
2M length, H® =(h,,1seshy 300 )T is the vector of
(2M +1) length, W"is the matrix of (4M +1,2M )

W® is the matrix of (4M +1,2M +1) size,

n

T
B, =(0,...0,8,, yrseeis Byyroos Brying 050
trix W does not contain the column that equals B

size,

The ma-

n’

2M
ﬁn—M,n—ZM
ﬂnfM,anMH
ﬂnfM,n72M+2 0
N (34)
I/I/n = ﬂnfM,n ﬁn+M,n
ﬂn+M,n+2M—2
ﬂn+M,n+2M—l
v Brrwiam
2M +1
6{n—M,n—ZM
anfM,rHZMJrl
anfM,n72M+2
o " (35)
VVn = anfM,n al1+M,n
O b an+M,n+2M—2
0 an+M,n+2M—1
0 a

n+M,n+2M
It must be noted that for getting the 2M coefficients
of the difference equation (32) we have to solve the
system of linear equations (33) that include (4M +1)
unknowns.
For the homogeneous chain «

n,n+s nn+s ﬂx

(=M <s<3M +1) the solution of the system (33) is
( hn,o =Za,)

= as’

h =ta,-M<s<M,

n,n+s

h . =Ff.,M<s<3M+1.

n,n+s

(36)

For this chain the equations (32) and (28) coincide.
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HEJIOKAJIBHBIE YPABHEHUSI AJ151 JIEKTPOMATHUTHOI'O ITOJISA
B HEOJHOPOJIHBIX YCKOPAIOIINX CTPYKTYPAX
H.U. Auzayxui

Paspaborana mporieaypa MojyueHHs] pa3HOCTHOTO YPaBHEHHUs, PEIICHUEM KOTOPOTO SIBISIOTCS COCTABJISIOIINE JJIEKTpHUC-
CKOTO (MJIM MarHMUTHOTO) TOJIsl B M30paHHBIX TOYKAX PE30HATOPHOW LEMH CBSI3aHHBIX Pe30HATOPOB. MbI Hadald ¢ BOJHOBOTO
YpaBHCHUS C TPAHUMYHBIMHU YCIIOBHUSIMHU H TIOJTYYHIIN Pa3HOCTHOE YpaBHEHUE 0€3 rpaHIYHBIX YCIOBU. [ paHUUHBIC YCIOBUS OBLITH
BKITFOUCHBI B K03()(OUIMEHTHI pa3HOCTHOTO YPABHEHUS JUIS AJIEKTPHIECKOTO MoJisl. [T0CKONBKY MMOTyd4eHHOE YpaBHEHNUE CBS3bIBA-
€T 3HAYCHHUE OIS B Pa3HBIX TOYKax (B oOIeM ciydae Ha OSCKOHEYHOM MHOXKECTBE TOUCK), MPEMJIOKEHHAs MPOoLeaypa Ipe-
CTaBIsIeT cO00l HENOKANBHYIO MOJIENIb OMHCaHusI 1oJisl. [IpoaHamn3npoBaHbl PEICHHs Pa3HOCTHOIO YPaBHEHHS [UIs DJICKTpUUe-
ckoro nossi. [Toka3aHo, 4TO OHM C XOpPOLIEH TOYHOCTHIO COBIANAIOT C PEIICHUSIMHU, KOTOPbIC ObUIH MOJYYSHBI MPSIMBIM CYMMH-
POBaHHEM COOTBETCTBYIOIINX PSIIIOB.

HEJIOKAJIBHI PIBHSIHHSA JJIS1 EIEKTPOMATI'HITHOI'O ITOJIA
B HEOJHOPIJHUX MPUCKOPIOIOUYUX CTPYKTYPAX
M.I. Aizayvkui

Po3po06ieHo npoleaypy OTpHMaHHs Pi3HUIIEBOTO PiBHSIHHSI, BUPIILICHHSIM SIKOTO € CKJIAJIOBI eJIeKTpUYHOro (a0 MarHiTHOro)
noJisi B 0OpaHuX TOYKaX PE30HATOPHOrO JIaHIIOra 3B’s3aHUX PE30HATOPiB. MU MOYanu 3 XBHIBOBOTO PiBHSHHS 3 TPAHUYHUMHU
YMOBaMH 1 OTPUMAIN Pi3HUIIEBE PiBHSIHHS 03 IpaHMYHHUX YMOB. ['paHWYHI yMOBH OyiM BKJIFOUCHI B KOCQIIIEHTH Pi3HUIIEBOTO
PIBHSHHS [UIS eNeKTPUIHOTO ToJsl. OCKITBKY OTpUMaHe PiBHAHHS ITOB'SI3y€ 3HAYCHHS ITOJISI B PI3HUX TOUYKax (y 3araJbHOMY BH-
HajKy Ha HECKiHYeHiI MHOXKHHI TOYOK), 3alIPONIOHOBAHA MPOIIEAypa SIBJsI€ COO0I0 HENOKANbHY MOJEINb omucy mojst. [IpoaHari-
30BaHO PO3B'SI3KM PI3HUIICBOTO PIBHSIHHS /IS CJICKTPUUYHOrO moss. [Toka3aHo, 110 BOHHM 3 XOPOIIOK TOYHICTIO CHIiBMAIar0Th 3
TaKUMH, SKi OyJIH OTPHMaHi MPSIMUAM CyMyBaHHSM BiJITOBITHUX PSIIB.
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