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NONLOCAL EQUATIONS FOR THE ELECTROMAGNETIC FIELD  
IN THE INHOMOGENEOUS ACCELERATING STRUCTURES  
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The procedure for obtaining a difference equation, the solution of which is the components of the electric (or 

magnetic) field at the chosen set of points in the volume of the resonator chain, was developed. We started with the 
wave equation with boundary conditions and obtained the difference equation without boundary conditions. Bound-
ary conditions were included into the coefficients of the difference equation for the electric field. As the obtained 
equation connects the field values in different points (in general case, on an infinite set of points), the proposed pro-
cedure represents a nonlocal model for field description. Solutions of the difference equation for the electric field 
were analyzed. It was shown that they coincide with good accuracy with the ones that were obtained by direct sum-
ming of relevant series. 

PACS: 41.20.Jb; 84.40.Az  
 

INTRODUCTION 
In the frame of the Coupled Cavity Model (CCM) 

the electromagnetic field in each cavity of the chain of 
resonators is represented as the expansion with the 
short-circuit resonant cavity modes [1 - 13] 

( ) ( ) ( ) ( )k k k
q q

q
E e E r= ∑
 

 ,                  (1) 

where ( )k
qe  − amplitudes of the q  modes, { }, ,q m s n= .  

For a long time, the most used models were based on 
the assumptions that if 

0

( )k
qω ω (

0

( )k
qω − the eigen frequency 

of the short-circuit k − cavity mode) only one term with 
0q q=  in the expansion (1) can be taken into account  
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and the RF coupling of a k − cavity can be restricted to 
two ( 1, 1k k+ − ) neighboring resonators 
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where 
0

( )k
qω  − eigen frequencies of these modes.  

Rejecting this assumption and considering all mem-
bers of the expansion (1), such coupled equations for 

0

( )k
qe  can be obtained under choosing the mode 0q q=  

as the basic one [11, 14 - 16] 
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Here 
0 0

( ) 2 ( )21 /k k
q qZ ω ω= − , 

0 0

( , )
,

k j
q qα  − real coefficients that 

depend on both the frequency ω  and geometrical sizes 
of all resonators.  

The CCM is a kind of decomposition approach in 
the study and development of complex electrodynamic 
systems [17 - 19]. 

Sums in the right side of (4) can be truncated 
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In the frame of the CCM the coupling coefficients 

0 0

( , )
,

k j
q qα  are electrodynamically strictly defined for arbi-

trary N  and can be calculated with necessary accuracy 
[11, 14 - 16]. In the theory of RF filters the coupling 

matrix circuit model is used intensively (see, for exam-
ple, [20] and cited there literature). The main problem is 
how to calculate the matrix elements.  

Amplitudes of other modes ( 0q q≠ ) can be found 
by summing the relevant series  
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Electric field in the resonator can be calculated as  
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where ( )kr V∈
 , ( )kV  is a part of chain space which be-

longs to the k -th resonator.  
The set of coupling equations (5) can be considered 

as a difference equation. This difference equation, 
which defines the amplitudes of the basic modes 

0

( )k
qe , is 

the main equation of the CCM.  
It is reasonable to note that the amplitudes of the 

basic modes 
0

( )k
qe  are non-measured values. Indeed, we 

can measure the components of electric field in any 
point, for example, by the nonresonant perturbation 
method [21 - 23], but we cannot measure the amplitudes 

( )k
qe  and have to use numerical methods for finding 

them by using the expansion (1). This circumstance 
creates difficulties in studying the properties of the real 
slow-wave waveguides, including their tuning [23, 24]. 
The similar situation arises also in other electrodynamic 
models. For example, the space harmonics in the 
“waveguide” model of homogeneous periodic wave-
guides [25] are non-measured values, too. 

If we choose the set of points ( )kr  which belongs to 
the volumes of different resonators (for example, 

1
( )0, / 2

k
k

s k
s

r z d d
−

=−∞

= = +∑ ), we can consider any compo-

nent of the vectors ( ) ( )( )k kE r


  (7) as the sequence of 
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complex numbers each of which are the sum of several 
values of grid function that is the solution of the known 
difference equation. Can we construct a new difference 
equation the solution of which will be the components 
of the electric field at the given points of different reso-
nators? 

1. THE EQUATION FOR THE ELECTRIC 
FIELD IN THE INFINITY CHAIN  

OF RESONATORS SECTION 
We can rewrite equations (5) and (7) as 
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where ( ) ( )( )k k
gE r  are the g -component of electric field 

at ( )kr r=
  . 
Using the results of Appendix 2, we get the differ-

ence equation for ( ) ( )( )k k
gE r  [26] 
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Here ( )(1)
, , 1 ,1 ,,..., , ,...,

T
k k N k k k NH h h h h− −=  are the solu-

tions of systems of linear equations 
(1) (1) (2) (2)

k k k k kW H W H+ = −Β .       (11) 
Matrices (1) (2) (2), , ,k k k kW W HΒ  are defined in in Ap-

pendix 2 ,0 1kh = .  
It should be noted that the coefficients ,k sh  in the 

equation (10) also depend on the set of points 
( ) ( 1) ( ) ( 1) ( ), ,..., ,... ,k N k N k k N k Nr r r r r− − + + − −     . 

The solution of the difference equation (10) gives 
magnitudes of electric field component ( ) ( )( )k k

gE r  in a 

fixed set of points ( )kr . 
For a homogeneous waveguide from the equation (10) 

we can get a polynomial characteristic equation [27]. 
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2. SOLUTIONS OF THE DIFFERENCE 
EQUATION FOR THE ELECTRIC FIELD 

We have added to the CCM codes [15, 16] proce-
dures for finding the solutions of systems of linear equa-
tions (11) and the solutions of the difference equation 
for ( ) ( )( )k k

gE r  (10). 
The procedures of calculation of the coefficients 

0 0

( , )
,

k k s
q qα +  and its dependencies on parameters of the DLW 

were presented earlier [15, 16]. Let’s consider the de-
pendencies of the coefficients ( , ) ( )( )k k s k

g rβ +   on parame-

ters of the DLW. Below as the set ( )kr , we will consider 

the cavity centers for which 
1

( )0, / 2
k

k
s k

s
r z d d

−

=−∞

= = +∑ . 

As the basic mode we choose the mode ( )0 0,1,0q = . 
We also restrict our consideration by the case 

( ) ( ) ( ) ( )( ) ( )k k k k
g zE r E r=

  . For homogeneous DLWs we 

define that
0

( ) ( )
, ( ) 1k k

z qE r =
 . 

For homogeneous DLWs with the same phase shift 
per cell 2 / 3ϕ π=  but different aperture sizes ( , )k k s

gβ
+  

are presented in Table 1. 
Table 1 

( , )k k s
gβ

+ for homogeneous DLWs with the phase shift 
per cell 2 / 3ϕ π= , f = 2856 MHz, d = 3.0989 cm, 

t = 0.4 cm, tr = 0 

s  a = 1.6 cm, 
b = 4.2343 cm 

a = 1.3 cm, 
b = 4.1406 cm 

a = 1 cm, 
b = 4.0754 cm 

-3 1.67E-06 1.98E-07 9.06E-09 
-2 -2.94E-04 -8.78E-05 -1.48E-05 
-1 6.32E-02 4.52E-02 2.70E-02 
0 8.16E-01 8.45E-01 8.86E-01 
1 6.32E-02 4.52E-02 2.70E-02 
2 -2.94E-04 -8.78E-05 -1.48E-05 
3 1.67E-06 1.98E-07 9.06E-09 

First of all, we have to note that the RF coupling 
leads to significantly changes in field distribution in 
compare with the one that gives formula (2). Indeed, 

( , )k k
zβ  significantly differs from 1 even for small aper-

tures ( a = 1 cm). This circumstance is especially im-
portant for the case of inhomogeneous DLWs.  

As follows from Appendix 2, in the case of homoge-
neous DLWs the coefficients of the difference equation 
(10) ,k sh  ( 0s ≠ , ,0 1kh = ) must to be equal the coeffi-

cients of the difference equation (8): 
0 0

( , )
, ,

k k s
k s q qh α += . Re-

sults of calculations that are presented in Table 2 confirm 
this fact. For DLWs with varying geometrical sizes the 
difference between the coefficients ,k sh  and 

0 0

( , )
,

k k s
q qα + are 

determined by the values of parameter gradients.  
Table 2 

Homogeneous DLWs with the phase shift per cell 
2 / 3ϕ π= , f = 2856 MHz, d = 3.0989 cm,  

t = 0.4 cm, tr = 0, a = 1.6 cm, b = 4.2343 cm 

s  ,k sh  
0 0

( , )
,

k k s
q qα +  

-3 3.06E-05 3.06E-05 
-2 -5.44E-03 -5.44E-03 
-1 1.01E-00 1.01E-00 
0 1.00E-00 1.00E-00 
1 1.01E-00 1.01E-00 
2 -5.44E-03 -5.44E-03 
3 3.06E-05 3.06E-05 

Let consider the more complicated DLW − the bi-
periodic DLW with such geometric sizes: 

cells A: d =3.9484 cm, t = 0.4 cm, tr = 0, 
a = 1.5 cm, b = 4.1329 cm; 

cells B: d = 0.5 cm, t = 0.4 cm, tr = 0, a = 1.5 cm, 
b =  4.4712 cm. 

For N = 3 coefficients ( , )k k s
gβ

+ , 
0 0

( , )
,

k k s
q qα + , ,k sh  

( f = 2856 MHz) are given in Table 3.1 and Table 3.2. 
We should like to note that the value of electric field in 
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the cell of B type are mostly determined by the three 
amplitudes of 010E  modes in the adjacent cells, while in 
cells of A type − mostly by the one amplitude (compare 

( , )k k s
gβ

+ in the second columns). 
Table 3.1 

 Coefficients for cells A 
s ( , )k k s

gβ
+  

0 0

( , )
,

k k s
q qα +  ,k sh  

-3 -7.39E-05 -5.23E+01 3.14E-02 
-2 1.04E-02 7.33E+03 -2.77E-00 
-1 2.12E-02 1.80E+04 -2.86E+01 
0 8.84E-01 1.00E-00 1.00E-00 
1 2.12E-02 1.80E+04 -2.86E+01 
2 1.04E-02 7.33E+03 -2.77E-00 
3 -7.39E-05 -5.23E+01 3.14E-02 
 

Table 3.2 
 Coefficients for cells B 

s ( , )k k s
gβ

+  
0 0

( , )
,

k k s
q qα +  ,k sh  

-3 -6.37E-04 -7.57E+02 1.15E-01 
-2 -1.86E-03 -2,12E+03 9.33E-01 
-1 2.66E-01 2.97 E+05 -1.70E+01 
0 2.48E-01 1.00E-00 1.00E-00 
1 2.66E-01 2.97 E+05 -1.70E+01 
2 -1.86E-03 -2,12E+03 9.33E-01 
3 -6.37E-04 -7.57E+02 1.15E-01 
 

It can be seen that the coefficients 
0 0

( , )
,

k k s
q qα +  and ,k sh  

are quite different. However, these different coefficients 
give the same dispersive characteristic. Indeed, the 
characteristic equation ( ( 1) ( )k k

g gE Eρ+ = ) for the differ-
ence equation of α -type (8) or h -type (10) has the 
same form ( N = 3) 

6 5 4 3 2
1 2 3 2 1 1 0.q q q q qρ ρ ρ ρ ρ ρ+ + + + + + =     (13) 

Results of calculations of the coefficients 1 2 3, ,q q q  
for the difference equations of α -type (with using 

0 0

( , )
,

k k s
q qα + ) and h -type (with using ,k sh ) show that their 

difference is small and the characteristic multipliers for 
these two types of equations coincide. For example, the 
suitable multipliers ρ  for several frequencies are given 
in Table 4. 

Table 4 
Solutions of the equation (13) 

f (GHz) αρ  hρ  
2.8561 (-1.00098,i0.00000) 

(-0.99902,i0.00000) 
(-1.00098,i0.00000) 
(-0.99902,i0.00000) 

2.857 (-0.99891, 
i4.65892E-02) 
(-0.99891, 
-i4.65892E-02) 

(-0.99891, 
i4.65842E-02) 
(-0.99891, 
-i4.65842E-02) 

2.86 (-0.98902, i0.14775) 
(-0.98902,-i0.14775) 

(-0.98902, i0.14775)  
(-0.98902,-i0.14775) 

                                                           
1The SUPERFISH gives two frequencies for π -

mode: f = 2856.38 MHz, f = 2856.09 MHz 

Analyzing the obtained results we can conclude that 
the new difference equation for the electric field val-
ues ( ) ( )( )k k

gE r  in the case of homogeneous periodic 
waveguide gives the same (up to calculation errors) dis-
persive characteristic as the difference equation for the 
amplitudes of 010E  modes. 

Consider the accuracy of the description of the dis-
tribution of the electric field based on the difference 
equation for the electric field values ( ) ( )( )k k

gE r  (10). 
On the base of the coupling equations (5) or (10) we 

can study the processes of wave propagation in inhomo-
geneous segments of DLWs [15, 16]. It can be done if we 
suppose that before and after the inhomogeneous segment 
of DLW there are the homogeneous segments of DLW 
(input and output waveguides). In homogeneous seg-
ments at sufficient distance from the connection interfac-
es (when all evanescent waves decay) we can search the 
solution of the difference equation in the form 

( ){ }
( ){ }

( ){ }

1,0 1

( )
1,0 1 1

2,0 2 2

exp

exp , ,

exp , ,

k
f

f

i k k

f R i k k k k

T i k k k k

ϕ

ϕ

ϕ

 − +
= − − <


− >

  (14) 

where ,f fR T  are the reflection and transmission coeffi-
cients.  

Injector sections are usually the DLW with geomet-
rical sizes that provide changing along structure not 
only phase velocity, but the amplitude of accelerating 
field too. We chose geometrical sizes close to the param-
eters of the injector that described in [28]. Dependences 
of the radii of apertures and the cavity length on the cell 
number are presented in Fig. 1 ( t =0.4 cm, tR = 0).  

 
Fig. 1. Dependences of the radii of apertures  

and the cavity length on the cell number 

 
Fig. 2. Solutions of difference equation (10) (1− ,n hE ) 

and the difference equation (5) (2− ,nE α ) 
From the Fig. 2 we can see that in the case of signif-

icant inhomogeneity the solutions of difference equation 
(10) (1− ,n hE ) and the difference equation (5) 

(2− ,nE α ) differ significantly. But the absolute values 
of longitudinal electric field ,n hE  and the values calcu-
lated on the base of sum (7) coincide with good accura-
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cy (Fig. 3). The same is true for phases. Therefore, the 
difference equation (10) can be used for direct calcula-
tion of the electric field distribution. The difference 
equation for the magnetic field can be obtained by 
changing the coefficients ( , ) ( )k j rβ



  in the sum (7). 

 
Fig. 3. Difference between absolute values  

of longitudinal electric field ,n hE   
and the values calculated on the base of sum (7) 

CONCLUSIONS  
We constructed a procedure for getting a difference 

equation, the solution of which is the components of the 
electric field at the given points of the resonator chain. 

Let’s follow again the main stages of getting this 
equation. We started from decomposing the considered 
region of space into simple regions, found solutions of 
the Maxwell equations in the form of an infinite series 
with unknown coefficients that partially satisfy the 
boundary conditions, used additional boundary condi-
tions and constructed a difference equation for some 
unknown coefficients. Then we constructed a difference 
equation for electric field components in some points. 
To find the values of the electric field, we must solve 
this equation already without any boundary conditions 
at the boundaries of the considered region. We started 
with the wave equation with boundary conditions and 
obtained the difference equation without boundary con-
ditions. Boundary conditions were included into the 
coefficients of the difference equation for the electric 
field. As the obtained equation connects the field values 
in different points, the proposed procedure represents a 
nonlocal model for field description. 

The proposed technique has several drawbacks. One 
of them is the necessity to define initial values of the 
electric field at the given points of the considered region. 
To eliminate it the procedure must be generalized to a 
finite number of resonators. The second one is the neces-
sity to work with ill-conditioned matrices. In the Coupled 
Cavity Model it is assumed that the coupling coefficients 
decrease rapidly with increasing distance from the given 
resonator 

0 0

( , )
, 0k k s

q q sα +
→∞→ . Therefore, in the proposed 

technique we have deal with numbers that vary greatly in 
magnitude. Presented above results show that we can, at 
least in some cases, get fairly accurate values of field 
parameters. This problem requires more study.  

The advantages of working with field values are ob-
vious. We can perform more accurate synthesis of the 
electromagnetic field distribution in a chain of coupled 
resonators [29] and their tuning [24, 30]. We can also 
study the characteristics of the wider class of inhomo-
geneous waveguides by decomposing them into the 
chain of coupled resonators. 

The developed computer codes can be applied for 
cylindrical geometries for which there are analytical 
expressions of the eigen functions. The area of using the 
proposed approach is wider as there is the general 
method that gives possibility to obtain the coupling co-
efficients for arbitrary chain of resonators without using 
the great number of eigen functions [31]. 

APPENDIX 1 
Consider an overdetermined linear system of equations 

,
1

, 1 1
M

n s s n
s

y f n Mγ
=

= ≤ ≤ +∑ .          (15) 

We shall suppose that all equations are independent 
and such system  

,
1

, 1
M

n s s n
s

y f n Mγ
=

= ≤ ≤∑               (16) 

is consistent. We introduce the set of fundamental solutions  

, , ,
1

, 1 , 1
M

n s s k n k
s

y k M n Mγ δ
=

= ≤ ≤ ≤ ≤∑ ,  (17) 

or in matrix form 
Y IΓ = ,                        (18) 

where Γ  and Y  are the matrices of M M×  size, 
( ) ( ),, ,, ,Y yn s n sn s n sγΓ = = , 1 k M≤ ≤ , 1 n M≤ ≤ . 

The solution of the system (16) can be represented in 
the form 

,
1

, 1
M

s k s k
k

y f y s M
=

= ≤ ≤∑ .               (19) 

Substituting this expression in the last equation 
( 1n M= + ) of the system (15), we obtain a relation to 
which the right-hand sides of the system (15) must satisfy 

1

1
0

M

n n
n

h f
+

=

=∑ ,                                  (20) 

where 1 1Mh + = −  and 

, 1,
1

, 1
M

n s n M s
s

h y n Mγ +
=

= ≤ ≤∑ .          (21) 

Using the above approach, for calculation the coeffi-
cients nh  we have to solve M  linear systems of equa-
tions (17). There is another method of calculation of 
these coefficients. From 
Ошибка! Источник ссылки не найден. it follows 

, , ,
1

M
T T

s n k s k n
s

Y I yγ δ
=

Γ = → =∑ .            (22) 

Consider M  linear forms 

,
1

, 1
M

n s n
n

h s Mγ
=

≤ ≤∑ .                    (23) 

Substituting (22) in (23), we get  

, 1, , , 1, , ,
1 1 1 1 1

M M M M M

n s n M k n s k n M k n s k n
n n k k n

h y yγ γ γ γ γ+ +
= = = = =

= =∑ ∑∑ ∑ ∑ .(24) 

Using (22), we obtain 

, 1,
1

, 1
M

n s n M s
n

h s Mγ γ +
=

= ≤ ≤∑ ,               (25) 

or in matrix form 
T H FΓ = ,                           (26) 

where ( )1,..., T
MH h h= , ( )1,1 1,,...,

T
M M MF γ γ+ += . 
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This is the system of linear equation solution whose 
solutions are the sought coefficients , 1nh n M≤ ≤ .   

It is followed from (20) that one element of the se-
quence { }h  is the arbitrary one. The system (25) corre-
sponds the case when 1 1Mh + = − . 

If we want to consider another element Kh  of the se-
quence { }h  as given, we have to change the equation (25) 

1

, K,
1,

, 1
M

n s n s K
n n K

h h s Mγ γ
+

= ≠

= − ≤ ≤∑ .           (27) 

APPENDIX 2 
For infinitely long chain the main set of coupled 

equations for amplitudes ny ( n−∞ < < ∞ ) we write as  

, 0
M

n n s n s
s M

yα + +
=−

=∑ .                        (28) 

The additional parameters nf  are the sum of the 
nearest amplitudes 

,

M

n n s n s n
s M

y fβ + +
=−

=∑ .                        (29) 

Let’s consider the interval cN n N N≤ ≤ + . What 
value of cN  have we to choose for obtaining the differ-
ence equation for the elements of the sequence nf ? This 
can be done if the number of equations ( )2 1eq cN N= +  
will be greater by one than the numbers of unknowns 

( )1 2y cN N M= + + . This condition gives 
1 2eq y cN N N M= + → = .                (30) 

Indeed, in this case we can find 4 1yN M= +  un-
knowns from yN  equations. Substitution them into the 
last equation gives the relation between 1 2 1cN M+ = +  
elements of sequence { }nf . It can be considered as a 
difference equation for nf .  

It is convenient to consider the interval 
N M n N M− ≤ ≤ + . Then the system of equations that 
can be transformed into the difference equation for the 
sequence { }nf  take the form ( N n→ ) 

,

,

,

,

...

0

...

0

M

n M n M s n M s n M
s M

M
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− − + − +
=−

+ + + + +
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=

=

=

=

∑

∑

∑

∑

.               (31) 

Using the results of the Appendix 1, we get the dif-
ference equation for nf   

, 0
M

n s n s
s M

h f +
=−

=∑ .                  (32) 

Here ,n sh ( 3 1, 0M s M s− ≤ ≤ + ≠ ) are the solutions of 
such systems of linear equations 

(1) (1) (2) (2)
,0n n n n n nW H W H h+ = −Β ,      (33) 

where ( )(1)
, , 1 ,1,..., , ,...,

T
n n M n n MH h h h h− −=  is the vector of 

2M  length, ( )(2)
, 1 ,3 1,...,

T
n n M n MH h h+ +=  is the vector of 

( 2M +1) length, (1)
nW is the matrix of ( 4 1,2M M+ ) 

size, (2)
nW  is the matrix of ( 4 1, 2 1M M+ + ) size, 

( ), , ,0,...,0, ,..., ,..., ,0,...,0
T

n n n M n n n n Mβ β β− +Β = . The ma-
trix (1)

nW does not contain the column that equals nΒ . 
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(35) 

It must be noted that for getting the 2M  coefficients 
of the difference equation  (32) we have to solve the 
system of linear equations (33) that include ( 4 1M + ) 
unknowns. 

For the homogeneous chain , ,,n n s s n n s sα α β β+ += =  
( 3 1M s M− < ≤ + ) the solution of the system (33) is 
( ,0 0nh α= ± ) 

,

,

, ,

, 3 1.
n n s s

n n s s

h M s M

h M s M

α

β
+

+

= ± − ≤ ≤

= < ≤ +

           (36) 

For this chain the equations (32) and (28) coincide.   
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НЕЛОКАЛЬНЫЕ УРАВНЕНИЯ ДЛЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ  
В НЕОДНОРОДНЫХ УСКОРЯЮЩИХ СТРУКТУРАХ 

Н.И. Айзацкий 
Разработана процедура получения разностного уравнения, решением которого являются составляющие электриче-

ского (или магнитного) поля в избранных точках резонаторной цепи связанных резонаторов. Мы начали с волнового 
уравнения с граничными условиями и получили разностное уравнение без граничных условий. Граничные условия были 
включены в коэффициенты разностного уравнения для электрического поля. Поскольку полученное уравнение связыва-
ет значение поля в разных точках (в общем случае на бесконечном множестве точек), предложенная процедура пред-
ставляет собой нелокальную модель описания поля. Проанализированы решения разностного уравнения для электриче-
ского поля. Показано, что они с хорошей точностью совпадают с решениями, которые были получены прямым сумми-
рованием соответствующих рядов. 

НЕЛОКАЛЬНІ РІВНЯННЯ ДЛЯ ЕЛЕКТРОМАГНІТНОГО ПОЛЯ  
В НЕОДНОРІДНИХ ПРИСКОРЮЮЧИХ СТРУКТУРАХ 

М.І. Айзацький 
Розроблено процедуру отримання різницевого рівняння, вирішенням якого є складові електричного (або магнітного) 

поля в обраних точках резонаторного ланцюга зв’язаних резонаторів. Ми почали з хвильового рівняння з граничними 
умовами і отримали різницеве рівняння без граничних умов. Граничні умови були включені в коефіцієнти різницевого 
рівняння для електричного поля. Оскільки отримане рівняння пов'язує значення поля в різних точках (у загальному ви-
падку на нескінченій множині точок), запропонована процедура являє собою нелокальну модель опису поля. Проаналі-
зовано розв'язки різницевого рівняння для електричного поля. Показано, що вони з хорошою точністю співпадають з 
такими, які були отримані прямим сумуванням відповідних рядів. 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Nikolskaia,+T&fullauthor=Nikolskaia,%20T.%20I.&charset=UTF-8&db_key=PHY
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