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The theory of standing waves of nuclear combustion in reactors having a flat, cylindrical or spherical shape of 

the core is developed. A spherical standing wave occurs when nuclear burning propagates radially from the center of 

the sphere, and 
238

UO2 fuel moves to the center and is removed from the system. The stability limits of standing 

waves of nuclear burning are investigated. It has been established that for standing waves there are minimum (criti-

cal) sizes at which they exist. Mathematical modeling of standing waves using the MCNPX code was carried out 

and critical sizes of standing waves of various symmetries were determined. 

 

INTRODUCTION  

In recent years, much attention has been paid to such 

a kind of nuclear burning wave [1] as a standing wave 

of nuclear burning in a moving fissile medium [2, 3]. 

The characteristics of these waves and the conditions of 

their existence were studied; the advantages of standing 

waves over traveling waves were analyzed [4–6]. How-

ever, most of the results are numerical, which compli-

cates the analysis of the properties of such systems. In 

this paper, for simple analytical models, we study the 

stability of standing burning waves in systems with ex-

ternal control at the boundaries of the regions of their 

existence. The existence of minimal (critical) sizes of 

standing burning waves is shown for one-dimensional, 

cylindrical, and spherical geometry. Using the MCNPX 

code [7], mathematical modeling of nuclear burning 

waves in UO2-based systems is carried out for one-

dimensional, cylindrical, and spherical cases. It is estab-

lished that for each geometry there is a minimum per-

missible size of a standing wave. The numerical values 

of the critical sizes of standing waves of one-

dimensional, cylindrical, and spherical symmetry are 

determined in UO2-based systems. 

1. ONE-DIMENSION BURNING WAVE 

EQUATIONS OF KINETICS  

IN A MOVING MEDIUM  

Let us consider the process of nuclear burning in a 

medium based on UO2 moving with a constant speed V 

relative to a fixed coordinate system x, y, z. The burning 

process takes place in two stages: at the first stage, neu-

tron capture by 
238

U nuclei causes chain of nuclear 

transformations 
238

U + n = 
239

U → 
239

Np → 
239

Pu, and 

at the second stage, fission of 
239

Pu nuclei with neutron 

emission occurs. The burning wave moves in the mate-

rial at a speed of , moreover, the first process occurs 

mainly at the leading edge of the wave, and the fission 

process occurs in the central and rear parts of the wave. 

If the medium velocity V and the wave velocity in the 

medium  are equal in magnitude and opposite in direc-

tion, then a standing burning wave is realized.  

The equations describing the standing nuclear burn-

ing waves of one-dimensional, cylindrical, and spherical 

symmetries in systems with external control were ob-

tained in [4, 5, 8]. Scalar neutron flux density in the 

moving coordinate system x', y', z' can be characterized 

by the following equation: 

( ) 0f aD S      ,               (1) 

where 
f  – and 

a – are the macroscopic cross sec-

tions for fission and absorption of neutrons; D is the 

neutron diffusion coefficient;   is the number of fis-

sion neutrons; S is the term describing the feedback and 

the automatic control of the reactor, which we take in 

the form:  fS  , where ρ – reactivity excess for 

the system (excluding feedbacks).  

We replace the coordinates x' with new variable 

proportional to the neutron flux in the materials under:  
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where a  
is the microscopic cross section for neutron 

absorption. After this, equation (1) will be simplified as:  
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The boundary conditions for the functions Ψ(φ) 

have the form:  

Ψ(0) = 0, Ψ(χ) = 0,               (4) 

where 
1 1( )a x dx

V








 
 

is the maximum neutron 

fluence achieved in the material after passing the region 

of nuclear burning. Equation (3) should be supplement-

ed by equations of the balance of isotope concentrations 

in the chain 
238

U → 
239

U → 
239

Np → 
239

Pu. In [9] a sta-

tionary solution of equation (3) was obtained: 
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n
0 is the initial concentration of 

238
U, and the parameter 

β defined by the formula:  
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Here c  
is the microscopic cross section for neutron 

absorption by 
238

U, 
239

Pu nuclei and fission products, 

f  is the microscopic fission cross section for 
239

Pu  

nucleus, and 89  is the cross section for transmutation 

of 
238

U into 
239

Pu.  

The maximum fluence χ implicitly defined by the 

expression:  
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and the parameter q – following formula: 
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System reactivity margin ρ (excluding feedback), 

necessary for the existence of a stationary solution is 

determined by the expression:  
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We introduce the dimensionless variables: 
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then formulas (2) and (6) will take the form: 
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In Fig. 1 the dependences of ( )   and ( )   on 

the dimensionless coordinate ξ, obtained by formulas 

(11), are shown.  
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Fig. 1. The density functions of the neutron flux ( )   

and fluence ( )  at χ = 1 

STANDING BURNING WAVES  

IN THE ONE-DIMENSIONAL CASE 

Consider the process of nuclear burning in a medium 

moving from two sides to the origin with a constant 

speed V, and the material that goes to the origin is con-

tinuously removed from the reactor, and the speed V is 

chosen so that the burning wave is at rest. Such a system 

can be described by the previous equations (1-3) in the 

half-space x ≥ 0 with mirror boundary conditions. The 

solution of equation (3) has the same form (5):  
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System reactivity margin ρ is determined by the 

equation: 
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Fig. 2 shows the profiles of the density of flux in 

standing burning waves for a number of 0  values. As 

can be seen from Fig. 2, a standing wave is a bound 

state of two waves traveling in opposite directions in 

media moving towards them.  

A condition for the existence of a standing burning 

wave is the presence of excessive reactivity in the sys-

tem ρ ≥ 0, which is suppressed by negative external 

feedback. From relation (13) we obtain the inequality     

c ≥ q0 or  
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Fig. 2. Flux profiles for c=10, β=1.99 and a number 

of values 0  

Inequality (14) holds for 0 > min , where 

min ( )с
 
is the minimum allowable dose in burned up 

fuel for which a stationary solution to the problem still 

exists. The dependence min ( )с
 
is shown in Fig. 3 for 

the value β = 1.99. A standing burning wave exists in 

the shaded area.  

Knowing the profile of the burning wave (see Fig. 

2), one can determine the characteristic size of the 

standing wave d1/2  (wave size at half its height). 
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Fig. 3. The dependence of the minimum allowable value 

of fluence 
min ( )с

 
on parameter c 

 

In Fig. 4 solid lines depict the dependences of the 

sizes of standing waves d1/2  on the magnitude of the 

fluence in the unloaded fuel 0  
for materials with β = 1 

and β = 2 for c = 10.  
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Fig. 4. The dependence of the size of the standing wave 

d1/2 on the magnitude of the fluence 0  

In Fig. 4, the horizontal dashed line shows the size 

of the corresponding traveling wave in infinite space.  

Fig. 4 shows that the minimum permissible dose 
min  

corresponds to the minimum standing wave size dcrit. 

Thus, for given values с and β a stable standing burning 

wave can exist only if its size exceeds the critical value 

dcrit (Fig. 5), and standing waves with dimensions small-

er than critical do not exist. 

SIMULATION OF ONE-DIMENSIONAL 

BURNING WAVES 

The calculation model is a 
238

U cylinder with a radi-

us of 30 and 120 cm length with mirror boundary condi-

tions. The profiles of the standing burning waves along 

the cylinder axis are plotted in Fig. 6, which shows the 

values keff and the corresponding wave sizes at half its 

height r1/2 . The value keff = 1 corresponds to the critical 

size <rcrit> = 21.2 cm.  

The dependence of keff of the standing burning wave 

on its size r1/2  is shown in Fig. 7, from which it follows 

that the critical size of a one-dimensional standing wave 

corresponds to 21.2 cm. 
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Fig. 5. The critical sizes of standing waves dcrit  

depending on the parameters c and β 
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Fig. 6. Profiles of standing burning waves  

of various sizes 
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wave on its dimensions at half height r1/2  

THE CRITICAL DIMENSIONS OF A ONE-

DIMENSIONAL STANDING BURNING WAVES  

Fig. 8 shows profiles of one-dimensional standing 

burning waves near a critical size. 

Thus, the total minimum (critical) size of a one-

dimensional standing burning wave in UO2 is 

dcrit = 2 <rcrit> = 42.4 cm. 
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Fig. 8. Profiles of standing burning waves near  

a critical size 

2. STANDING BURNING WAVE  

OF A CYLINDRICAL FORM 

Consider a cylindrical reactor in which nuclear burn-

ing propagates radially from the axis, and the 
238

U fuel 

(which we consider to be an incompressible medium) 

continuously moves from infinity towards the axis with 

a speed V(r) = VR R/r. Material approaching the axis is 

removed from the system. In this case, equation (1) 

takes the form: 

( ) 0f a

D d d
r S

r dr dr


 
      
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, (15) 

with boundary conditions: 

Ψ(∞) = 0, dΨ(0)/dr = 0.   (16) 
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Fig. 9. Profiles of neutron fluxes in cylindrical standing 

waves at large values of χ
0
 for c=10, β = 2 and χ = 1.5  

By substitution   ( ) / ( )
r

Ra V r rRr r d 


     

equation (15) can be reduced to the following form [5]: 
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where 
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Numerical solutions of equation (17) are shown in 

Fig. 9 using dimensionless variables:  

02 an r
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THE EXISTENCE REGION OF STANDING 

CYLINDRICAL BURNING WAVES 

The condition for the existence of a standing cylin-

drical burning wave is determined by the same relation 

c ≥ q
0
, as for a standing plane wave (14). As a result, we 

have the same state diagram as in Fig. 3. Standing 

waves exist in the area 
0 min ( )с  . The minimum 

allowable integral neutron flux 
min  in the fuel with 

the given values of c and β is determined from the equa-

tion:  
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The functions 
min ( )с

 
for a cylindrical and for a 

plane standing burning wave coincide. 

DIMENSIONS OF A CYLINDRICAL  

STANDING WAVE 

The solid line in Fig. 10 shows the dependence of 

the size of the standing waves d1/2  (wave diameter at 

half its height) on the maximum fluence χ
0
 in the mate-

rial with β = 2.  
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Fig. 10. The dependence of the size of the standing wave 

d1/2 on the magnitude of the fluence χ
0
 

The horizontal dashed line in Fig. 10 shows the size 

of a traveling wave in infinite space.   

THE CRITICAL SIZE OF A STANDING 

CYLINDRICAL WAVE 

The dependence of the dimensions of the cylindrical 

standing wave d1/2 on the fluence χ
0
 is shown in Fig. 11; 

it differs a little from the corresponding dependence in 

Fig. 4, however, the same value of the critical fluence 

min
 

is observed on them, below which a standing 

burning wave does not exist. 

For standing cylindrical burning waves with given 

values of с and β there is also a critical size dcrit,, less 

than which they do not exist.  
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Fig. 11. Dependence of the sizes of a cylindrical 

standing wave d1/2 on the fluence χ
0
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Fig. 12. Dependence of the critical size of cylindrical 

standing wave dcrit on c at β = 2 

Fig. 12 shows the dependence of the critical size of a 

cylindrical standing wave dcrit on the value of the pa-

rameter c at β = 2; the horizontal dashed line shows the 

width of the traveling wave in infinite space in the mate-

rial with the same values of c and β.  

SIMULATION OF CYLINDRICAL  

BURNING WAVES 

The calculation model is a 
238

UO2 cylinder having a 

radius of 2 m and a height of 20 cm with mirror bounda-

ry conditions. The profile of a standing burning wave, 

which remains motionless for 1000 days, is shown in 

Fig. 13.  
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Fig. 13. Standing cylindrical burning wave 
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Fig. 14. Simulation results of cylindrical burning waves 

near the critical diameter 
 

From the simulation results presented in Fig. 14 it 

follows that the critical diameter of the cylindrical 

standing burning wave in UO2 is dcrit  = 103 cm.  

3. STANDING SPHERICAL WAVE 

OF NUCLEAR BURNING 

Consider a spherical reactor in which nuclear burn-

ing propagates radially from the center, and 
238

UO2 fuel 

continuously moves from infinity to the center of the 

reactor at a speed V(r) = VR (R / r)
2
 . Material approach-

ing the center is removed from the system. The neutron 

kinetics in a spherical wave is described by the equation  
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where D are the neutron diffusion coefficients and 

Ψ(∞) = 0, dΨ(0)/dr = 0 are the boundary conditions.  

Instead of the coordinate r, we introduce in (19) the 

dimensionless fluence ( )r :  
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and, as before, q
0
(β) is described by formula (12), and χ

0
 

is a free parameter.  

CALCULATION OF A STANDING SPHERICAL 

WAVE PROFILE 

Numerical solutions of equation (21) in variables  

02 an r
D


   and 
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0 02R a
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n V R n

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 . are shown in 

Fig. 15. 

The condition for the existence of a standing spheri-

cal burning wave is determined by the same relation 

c ≥ q
0
 (see (14)). 

DIMENSIONS OF A SPHERICAL  

STANDING WAVE 

Fig. 16 shows the dependence of the dimensions of a 

spherical standing wave d1/2 on fluence χ
0
. As can be 

seen from this dependence, there is a critical fluence 

below which a standing burning wave does not exist in 

this material.  
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THE CRITICAL SIZE OF A SPHERICAL 

STANDING WAVE 

For standing spherical burning waves with given 

values of c and β just as for plane and cylindrical waves, 

there exists a critical size dcrit, less than which they do 

not exist. 
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Fig. 17. The dependence of the critical size of a spheri-

cal standing wave dcrit on c at β=2 
 

Fig. 17 shows the dependence of the critical size of 

a spherical standing burning wave dcrit on the value of 

the parameter c at β = 2. For spherical standing waves, 

the critical wave size dcrit is a more significant limitation 

than for standing cylindrical and plane waves.  

SIMULATION OF SPHERICAL  

BURNING WAVES 

To simulate a spherical burning wave, a sphere of 
238

UO2 with a radius of 2 m was used. Profiles of stand-

ing burning waves are shown in Fig. 18, at which values 

of the keff and the wave diameter at half its height 

<dcrit> = 104 cm corresponding to keff = 1 are given. 
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Fig. 18. Simulation results of spherical standing  

burning waves near a critical size 
 

So, the minimum (critical) diameter of a spherical 

standing burning wave in UO2 is dcrit = 104 cm.  

CONCLUSIONS 

• Nuclear burning waves exist not only in one-

dimensional geometry, but also in systems with cylin-

drical and spherical symmetry.  

• The theory of standing nuclear burning waves in 

systems with external control in moving fuel media with 

plane, cylindrical and spherical symmetries is proposed. 

• Criteria were established for the existence of 

standing nuclear burning waves in reactors with differ-

ent core symmetries, and state diagrams of such reactors 

were constructed.  

• The critical (minimum permissible) sizes of 

standing waves of various symmetries are determined.  

REFERENCES 

1. L.P. Feoktistov. Neutron-fission wave // Rep. 

Academy Sciences of the USSR. 1989, v. 309, p. 864-

867. 

2. T. Ellis, R. Petroski. Traveling-Wave Reactors: 

A Truly Sustainable and Full-Scale Resource for Global 

Energy Needs // Proceedings of ICAPP ’10, San Diego, 

CA, USA, June 13-17, 2010, 10189 p. 

3. TERRAPOWER, LLC Traveling Wave Reactor 

Develop Program Overview //  

http://dx.doi.org/10.5516/NET.02.2013.520 

4. Yu.Y. Leleko, V.V. Gann, A.V. Gann. Computer 

Simulation of Stationary Burning Wave Reactor //  4th 

International Conference “Computer modelling in high-

tech” (CMHT-Kharkov 2016), May 2631, 2016, Khar-

kov, Ukraine, p. 206 

5. Yu.Y. Leleko, V.V. Gann, A.V. Gann. Nuclear 

reactor on cylindrical standing burning wave with an 

external negative reactivity feedback // Problems of 

http://dx.doi.org/10.5516/NET.02.2013.520


 

 

Atomic Science and Technology. 2017, N 2(108), 

p. 138-143. 

6. V.V.Gann, Yu.Y.Leleko, A.V.Gann Computer 

simulation of nuclear reactor on cylindrical standing 

burning wave // Proceedings of NUCLEAR 2017 the 

10th International Conference on Sustainable Develop-

ment through Nuclear Research and Education, Pitesti,  

2017, May 2426, p. 161-168.  

7. MCNPX User’s Manual Version 2.5.0, April. 

2005 LA-CP-05-0369. 

8. Yu.Y. Leleko, V.V. Gann, A.V. Gann. Spherical 

standing burning wave with an external automatic reac-

tivity control // Problems of Atomic Science and Tech-

nology. 2019, N 5(123), p. 18-24. 

9. V.V. Gann, A.V. Gann. Benchmark on traveling 

wave fast reactor with negative reactivity feedback ob-

tained with MCNPX code // 4 International Conference 

“Current Problems in Nuclear Physics and Atomic En-

ergy” (NPAE-Kyiv 2012), September 37, 2012, Kyiv, 

Ukraine. Proceedings Part II, p. 421-425.  

 

Article received 19.03.2020 

 

КРИТИЧЕСКИЕ РАЗМЕРЫ СТОЯЧИХ ВОЛН ЯДЕРНОГО ГОРЕНИЯ  

В СИСТЕМАХ С ВНЕШНИМ УПРАВЛЕНИЕМ  

Ю.Я. Лелеко, В.В. Ганн 

Развита теория стоячих волн ядерного горения в реакторах, имеющих плоскую, цилиндрическую или 

сферическую форму активной зоны. Сферическая стоячая волна возникает в случае, когда ядерное горе-

ние распространяется радиально от центра сферы, а топливо 
238

UO2 двигается к центру и удаляется из си-

стемы. Исследованы границы устойчивости стоячих волн ядерного горения. Установлено, что для стоячих 

волн имеются минимальные (критические) размеры при которых они существуют. Проведено математи-

ческое моделирование стоячих волн с помощью кода MCNPX и определены критические размеры стоячих 

волн различной симметрии. 

 

 

КРИТИЧНI РОЗМIРИ СТОЯЧИХ ХВИЛЬ ЯДЕРНОГО ГОРІННЯ  

В СИСТЕМАХ З ЗОВНІШНІМ УПРАВЛІННЯМ 

Ю.Я. Лелеко, В.В. Ганн 

Була розвинена теорія стоячих хвиль ядерного горіння в реакторах,маючих плоску, циліндричну та сфе-

ричну форму активної зони. Розглянуто сферичний реактор, в якому хвиля ядерного горіння рухається раді-

ально від центру, а паливо – до центру реактора та вилучається із нього. При підживленні такої системи 
238

UO2 в ній може існувати сферична стояча хвиля ядерного горіння. Показано, що для стоячих хвиль існу-

ють мінімальні (критичні) розміри, до яких вони існують. Впроваджено чисельне моделювання стоячих 

хвиль з використанням коду MCNPX та відзначені критичні розміри стоячих хвиль різної симетрії. 

 

 

 



 

 

 


