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The theory of standing waves of nuclear combustion in reactors having a flat, cylindrical or spherical shape of
the core is developed. A spherical standing wave occurs when nuclear burning propagates radially from the center of
the sphere, and **®U0, fuel moves to the center and is removed from the system. The stability limits of standing
waves of nuclear burning are investigated. It has been established that for standing waves there are minimum (criti-
cal) sizes at which they exist. Mathematical modeling of standing waves using the MCNPX code was carried out
and critical sizes of standing waves of various symmetries were determined.

INTRODUCTION

In recent years, much attention has been paid to such
a kind of nuclear burning wave [1] as a standing wave
of nuclear burning in a moving fissile medium [2, 3].
The characteristics of these waves and the conditions of
their existence were studied; the advantages of standing
waves over traveling waves were analyzed [4-6]. How-
ever, most of the results are numerical, which compli-
cates the analysis of the properties of such systems. In
this paper, for simple analytical models, we study the
stability of standing burning waves in systems with ex-
ternal control at the boundaries of the regions of their
existence. The existence of minimal (critical) sizes of
standing burning waves is shown for one-dimensional,
cylindrical, and spherical geometry. Using the MCNPX
code [7], mathematical modeling of nuclear burning
waves in UO,-based systems is carried out for one-
dimensional, cylindrical, and spherical cases. It is estab-
lished that for each geometry there is a minimum per-
missible size of a standing wave. The numerical values
of the critical sizes of standing waves of one-
dimensional, cylindrical, and spherical symmetry are
determined in UO,-based systems.

1. ONE-DIMENSION BURNING WAVE

EQUATIONS OF KINETICS
IN A MOVING MEDIUM

Let us consider the process of nuclear burning in a
medium based on UO, moving with a constant speed V
relative to a fixed coordinate system X, y, z. The burning
process takes place in two stages: at the first stage, neu-
tron capture by 2®*U nuclei causes chain of nuclear
transformations *U + n = *°U — #*Np — Py, and
at the second stage, fission of ?°Pu nuclei with neutron
emission occurs. The burning wave moves in the mate-
rial at a speed of o, moreover, the first process occurs
mainly at the leading edge of the wave, and the fission
process occurs in the central and rear parts of the wave.
If the medium velocity V and the wave velocity in the
medium o are equal in magnitude and opposite in direc-
tion, then a standing burning wave is realized.

The equations describing the standing nuclear burn-
ing waves of one-dimensional, cylindrical, and spherical
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symmetries in systems with external control were ob-
tained in [4, 5, 8]. Scalar neutron flux density in the
moving coordinate system x', y*, ' can be characterized
by the following equation:

DAY +(Z, -Z,)¥+S =0, Q)
where ¥, —and ¥ - are the macroscopic cross sec-

tions for fission and absorption of neutrons; D is the
neutron diffusion coefficient; v is the number of fis-
sion neutrons; S is the term describing the feedback and
the automatic control of the reactor, which we take in

the form: S=-pV2 ¥, where p — reactivity excess for

the system (excluding feedbacks).
We replace the coordinates x' with new variable
proportional to the neutron flux in the materials under:

p(x) =0, [ (x',t)dt'=0, IV [W(x)dx, (2

where o, is the microscopic cross section for neutron
absorption. After this, equation (1) will be simplified as:
Do? d?¥?

V2 de?

The boundary conditions for the functions ¥(¢)

+v(l-p)Z;,-2,=0. (3

have the form:
¥(0)=0,¥(x) =0, 4)

where ;{:%J'\{J(xl)dxl is the maximum neutron

fluence achieved in the material after passing the region
of nuclear burning. Equation (3) should be supplement-
ed by equations of the balance of isotope concentrations
in the chain 2*U — 2°U — #*Np — #Pu. In [9] a sta-
tionary solution of equation (3) was obtained:
2 2nV?
Y(p) = f(e)- ®)
D a
Here ()= /9" +(1-2f-Q)p+(-24-20) -1)- a9,
n, is the initial concentration of **U, and the parameter
/3 defined by the formula:




P=0,0,04] 0';’ . (6)

Here G, is the microscopic cross section for neutron
absorption by 2*®U, #°Pu nuclei and fission products,
o, is the microscopic fission cross section for **Pu

nucleus, and Oy is the cross section for transmutation

of 28U into *°Pu.
The maximum fluence y implicitly defined by the
expression:

€ - - 7e

= . (N
7+ et —+2(y+e 7 -1)°
and the parameter q — following formula:
2By —0A-2p6)(e* -1
_2Br-(-2p)e " -1 @

1-(1+ p)e™*
System reactivity margin p (excluding feedback),

necessary for the existence of a stationary solution is

determined by the expression:
2

o
p=—a(c—q),. 9)
O OggV
c;C
where ¢ = v — 289 —%4-2[3.
Ga Ga

We introduce the dimensionless variables:

_ 20,0, . :‘P(x) Do, 10
p Ve o W
then formulas (2) and (6) will take the form:
@ d 1
v=yflp) i s=-[ L=
712 f(Q))

In Fig. 1 the dependences of /(&) and (&) on

the dimensionless coordinate &, obtained by formulas

(11), are shown.
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Fig. 1. The density functions of the neutron flux /(&)
and fluence (&) aty =1

STANDING BURNING WAVES
IN THE ONE-DIMENSIONAL CASE

Consider the process of nuclear burning in a medium
moving from two sides to the origin with a constant
speed V, and the material that goes to the origin is con-
tinuously removed from the reactor, and the speed V is

chosen so that the burning wave is at rest. Such a system
can be described by the previous equations (1-3) in the
half-space x > 0 with mirror boundary conditions. The
solution of equation (3) has the same form (5):
2nV?
Y (p) ==
(9) Do

a

(12)

f(@.0,)

where
f(p,0,) = B’ +(1-2—0p)p— e "0+ (1-2-20,)(e " -1)
and

G T T 1
Xo = _Va J-‘P(X )dX" — fluence in the discharged fuel.
0

System reactivity margin p is determined by the
equation:
2
o
P= - (C_qo)-
O OgV
Fig. 2 shows the profiles of the density of flux in

(13)

standing burning waves for a number of ¥, values. As
can be seen from Fig. 2, a standing wave is a bound
state of two waves traveling in opposite directions in
media moving towards them.

A condition for the existence of a standing burning
wave is the presence of excessive reactivity in the sys-
tem p > 0, which is suppressed by negative external
feedback. From relation (13) we obtain the inequality
C>(oOr
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Fig. 2. Flux profiles for c=10, f=1.99 and a number
of values g,

Inequality (14) holds for where

Xo> X min -
Xin (€) is the minimum allowable dose in burned up
fuel for which a stationary solution to the problem still
exists. The dependence ., (c) is shown in Fig. 3 for

the value B = 1.99. A standing burning wave exists in
the shaded area.

Knowing the profile of the burning wave (see Fig.
2), one can determine the characteristic size of the
standing wave d, (wave size at half its height).
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Fig. 3. The dependence of the minimum allowable value
of fluence y,;, (¢) on parameter c

In Fig. 4 solid lines depict the dependences of the
sizes of standing waves d;, on the magnitude of the

fluence in the unloaded fuel ¥, for materials with =1
and g = 2 for ¢ = 10.
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Fig. 4. The dependence of the size of the standing wave

dy/> on the magnitude of the fluence %,

In Fig. 4, the horizontal dashed line shows the size
of the corresponding traveling wave in infinite space.
Fig. 4 shows that the minimum permissible dose y, .

corresponds to the minimum standing wave size di.
Thus, for given values ¢ and £ a stable standing burning
wave can exist only if its size exceeds the critical value
derit (Fig. 5), and standing waves with dimensions small-
er than critical do not exist.

SIMULATION OF ONE-DIMENSIONAL
BURNING WAVES

The calculation model is a *®U cylinder with a radi-
us of 30 and 120 cm length with mirror boundary condi-
tions. The profiles of the standing burning waves along
the cylinder axis are plotted in Fig. 6, which shows the
values ke and the corresponding wave sizes at half its
height ry, . The value ke = 1 corresponds to the critical
size <rgi>=21.2 cm.

The dependence of ke of the standing burning wave
on its size ry;, is shown in Fig. 7, from which it follows
that the critical size of a one-dimensional standing wave
corresponds to 21.2 cm.
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Fig. 5. The critical sizes of standing waves d.
depending on the parameters ¢ and f§
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THE CRITICAL DIMENSIONS OF A ONE-
DIMENSIONAL STANDING BURNING WAVES

Fig. 8 shows profiles of one-dimensional standing
burning waves near a critical size.

Thus, the total minimum (critical) size of a one-
dimensional standing burning wave in UQO, is
Aerit = 2 <rgie> = 42.4 cm.
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2. STANDING BURNING WAVE
OF A CYLINDRICAL FORM

Consider a cylindrical reactor in which nuclear burn-
ing propagates radially from the axis, and the *U fuel
(which we consider to be an incompressible medium)
continuously moves from infinity towards the axis with
a speed V(r) = Vi R/r. Material approaching the axis is
removed from the system. In this case, equation (1)
takes the form:

Dd( d¥

___(r—J+(vz, —3)¥+S=0: (15)
rdr\ dr
with boundary conditions:
Y(0) =0, d¥(0)/dr = 0. (16)
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Fig. 9. Profiles of neutron fluxes in cylindrical standing
waves at large values of;(ofor c=10,f=2andy=1.5

By substitution ¢@(r) ==o, /V; RI r"P(r")dr’

equation (15) can be reduced to the following form [5]:
Do, r?(¢) d¥’
a = f ,
2nVZ R® d¢ @)
where f,(p) =28p-(1-28-0,)(* -1)+qupe .

Numerical solutions of equation (17) are shown in
Fig. 9 using dimensionless variables:

A7)

THE EXISTENCE REGION OF STANDING
CYLINDRICAL BURNING WAVES

The condition for the existence of a standing cylin-
drical burning wave is determined by the same relation
€>q,as for a standing plane wave (14). As a result, we
have the same state diagram as in Fig. 3. Standing
waves exist in the area y, > y.. (c). The minimum

allowable integral neutron flux ., in the fuel with
the given values of ¢ and § is determined from the equa-
tion:

o = 2Blima ~A=2B)(€ "™ ~1)

(18)
1- (1+ Xmin )eizmin

The functions y,.,,(c) for a cylindrical and for a
plane standing burning wave coincide.

DIMENSIONS OF A CYLINDRICAL
STANDING WAVE

The solid line in Fig. 10 shows the dependence of
the size of the standing waves d;, (wave diameter at
half its height) on the maximum fluence X in the mate-

rial with = 2.

304
28]
26
24
22
20
18
16
_0314_
12
10
84
64
4
2 ‘
O T ‘I T
00 02 04 06

B=2,x=15

OT8 lTO 1T2 174 1?6
%
Fig. 10. The dependence of the size of the standing wave

dy» on the magnitude of the fluence X

The horizontal dashed line in Fig. 10 shows the size
of a traveling wave in infinite space.

THE CRITICAL SIZE OF A STANDING
CYLINDRICAL WAVE

The dependence of the dimensions of the cylindrical
standing wave dy;, on the fluence X is shown in Fig. 11;
it differs a little from the corresponding dependence in
Fig. 4, however, the same value of the critical fluence
Xmin is observed on them, below which a standing

burning wave does not exist.

For standing cylindrical burning waves with given
values of ¢ and g there is also a critical size dgi,, less
than which they do not exist.
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Fig. 12. Dependence of the critical size of cylindrical
standing wave d,roncat g =2

Fig. 12 shows the dependence of the critical size of a
cylindrical standing wave dg; on the value of the pa-
rameter ¢ at = 2; the horizontal dashed line shows the
width of the traveling wave in infinite space in the mate-
rial with the same values of ¢ and .

SIMULATION OF CYLINDRICAL
BURNING WAVES

The calculation model is a *®*U0, cylinder having a
radius of 2 m and a height of 20 cm with mirror bounda-
ry conditions. The profile of a standing burning wave,
which remains motionless for 1000 days, is shown in
Fig. 13.
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Fig. 14. Simulation results of cylindrical burning waves
near the critical diameter

From the simulation results presented in Fig. 14 it
follows that the critical diameter of the cylindrical
standing burning wave in UO, is d; = 103 cm.

3. STANDING SPHERICAL WAVE
OF NUCLEAR BURNING

Consider a spherical reactor in which nuclear burn-
ing propagates radially from the center, and **U0, fuel
continuously moves from infinity to the center of the
reactor at a speed V(r) = Vg (R / r)* . Material approach-
ing the center is removed from the system. The neutron
kinetics in a spherical wave is described by the equation

Dd( ,d¥

= dr(r o j+(v2f LI)¥Y+S=0, (19)

where D are the neutron diffusion coefficients and
¥(w0) =0, d¥(0)/dr = 0 are the boundary conditions.

Instead of the coordinate r, we introduce in (19) the

dimensionless fluence ¢(r):

O_ o0
r)=—2_|¥(rr?dr', 20
o(r) R j (r) (20)
4 2
then D% I'(9) d¥ = f.(o,qp), 1)

2n,V¢ R de

where f,(p,0,) =289~ (1-28-0)(€"* —1)+upe™”
and, as before, q () is described by formula (12), and x,
is a free parameter.
CALCULATION OF A STANDING SPHERICAL
WAVE PROFILE
Numerical solutions of equation (21) in variables
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Fig. 15.

The condition for the existence of a standing spheri-
cal burning wave is determined by the same relation
> q, (see (14)).

DIMENSIONS OF A SPHERICAL
STANDING WAVE

Fig. 16 shows the dependence of the dimensions of a
spherical standing wave dy, on fluence X, As can be

seen from this dependence, there is a critical fluence
below which a standing burning wave does not exist in
this material.

. are shown in
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THE CRITICAL SIZE OF A SPHERICAL
STANDING WAVE

For standing spherical burning waves with given
values of ¢ and f just as for plane and cylindrical waves,
there exists a critical size dgi, less than which they do
not exist.
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Fig. 17. The dependence of the critical size of a spheri-
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Fig. 17 shows the dependence of the critical size of
a spherical standing burning wave d.;; on the value of
the parameter ¢ at g = 2. For spherical standing waves,

the critical wave size d.;; is a more significant limitation
than for standing cylindrical and plane waves.

SIMULATION OF SPHERICAL
BURNING WAVES

To simulate a spherical burning wave, a sphere of
28y, with a radius of 2 m was used. Profiles of stand-
ing burning waves are shown in Fig. 18, at which values
of the ke and the wave diameter at half its height
<di> = 104 cm corresponding to ke = 1 are given.
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Fig. 18. Simulation results of spherical standing
burning waves near a critical size

So, the minimum (critical) diameter of a spherical
standing burning wave in UO, is d.; = 104 cm.

CONCLUSIONS

* Nuclear burning waves exist not only in one-
dimensional geometry, but also in systems with cylin-
drical and spherical symmetry.

» The theory of standing nuclear burning waves in
systems with external control in moving fuel media with
plane, cylindrical and spherical symmetries is proposed.

» Criteria were established for the existence of
standing nuclear burning waves in reactors with differ-
ent core symmetries, and state diagrams of such reactors
were constructed.

» The critical (minimum permissible) sizes of
standing waves of various symmetries are determined.
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KPUTHUYECKHUE PASMEPBI CTOAYUX BOJIH AAEPHOI'O 'OPEHUSA
B CUCTEMAX C BHEHIHUM YIIPABJIEHUEM

FO.A. Jlenexo, B.B. I'ann

Pa3BuTa Teopus CTOAYMX BOJIH SAEPHOTO TOPEHHUS B PEAKTOPaX, UMEIOIIUX IUIOCKYI0, IMIHHIPHUECKYIO WIIH
cheprueckyro ¢popmy akTHBHON 30HBI. Ceprueckasi cTosiuasi BOJHA BOHUKAET B Clly4ae, KOTJa siIepHOe rope-
HHE PACIIPOCTPAHSETCS PajHaIbHO OT HEHTpa cepbl, a TommBo ~°UQ, JBHraeTcs K UCHTPY H YIANACTCS U3 CH-
ctembl. MccenoBaHbl TpaHUIBl YCTOMYMBOCTH CTOSYMX BOJIH SIJIEPHOTO TOPEHUS. Y CTAHOBIIEHO, YTO JJISl CTOSYUX
BOJIH UMEIOTCS MUHUMAJIbHBIE (KPUTHYIECCKHE) pa3Mephl IPH KOTOPEIX OHHU CYIIecTBYIOT. [IpoBeneHo mMaTtemaTh-
YeCKOe MOZCIHPOBAaHNE CTOSTIMX BOJH ¢ moMomnsio koga MCNPX u ompeneneHpl KpUTHIECKHE pa3MeEpPhl CTOSIIX

BOJIH paanquﬁ CUMMCTpPHUHU.

KPUTHUYHI PO3MIPU CTOAYUX XBUJIb AJJEPHOI'O I'OPIHHSA
B CUCTEMAX 3 30BHIIIHIM YIIPABJITHHAM

F0.A. Jleneko, B.B. I'aun

Byna po3BuHEHA TEOPist CTOSYNX XBHIIb SJIEPHOTO TOPIHHS B PEAKTOPAX,MAIOUUX IUIOCKY, IMITIHAPHIHY Ta ce-
pruHy GopMy aKTHBHOI 30HH. PO3rIIsHYTO chepriHUIA peakTop, B IKOMY XBIJIS SIIEPHOTO TOPIHHS pyXa€eThes pasi-
QIBPHO BiJ HEHTPY, a MAINBO — A0 IIEHTPY PEaKTOpa Ta BHIYYAETHCS i3 HHOTO. [IpM MifKMBICHHI Takoi cHCTEMH
280, B Hiii Moxe iCHYBaTH ceprdHa CTOSYA XBHIIS SIEPHOrO ropinHs. I10Ka3aHo, IO U CTOSYNX XBHJIb iCHY-
I0Th MiHIMaJbHI (KPUTHYHI) PO3MIPH, IO SKAX BOHH iCHYIOTh. BIPOBa/PKEHO YHCENbHE MOJCITIOBAHHS CTOSTIUX
XBWJIb 3 BUKOpUCTaHHAM Ko7y MCNPX Ta Bif3HaueHI KpUTHYHI PO3MIpH CTOSYMX XBHJIb Pi3HOT CUMETPIi.






