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We consider the fast charged particles scattering in ultrathin crystals on the base of the Born approximation of
quantum electrodynamics. The main attention is paid to the question of the scattering cross section splitting into
coherent and incoherent components when one of the crystallographic axes and planes is oriented along the direction
of particle motion. It is shown that both the coherent and the incoherent components of the scattering cross section
considerably depend on the orientation of the crystallographic axes relatively to the incident beam. In particular, it
was shown that when particles are scattered by the crystal planes of atoms, the incoherent scattering cross section

does not contain the Debye-Waller factor.
PACS: 03.65.Nk, 11.80.Fv

INTRODUCTION

When fast charged particles pass through matter,
various coherent and interference effects are possible in
their interaction with the atoms of the medium. The ex-
istence of such high-energy effects in ultrarelativistic
electrons radiation in oriented crystals was noted in the
work of Ter-Mikaelyan [1] and in an amorphous me-
dium in the work of Landau and Pomeranchuk [2].
Similar effects appear in other electromagnetic proc-
esses at high energies, such as the electron-positron
pairs formation, ionization energy losses of particles in
substances, etc. (see the monographs [3, 4] and refer-
ences in this them). Such effects are caused by interac-
tion of particles with atoms of the medium within co-
herence lengths (formation lengths) of these processes,
which at high energies can be macroscopic size.

Of particular interest is the process of fast charged
particles scattering in thin layers of a substance, since
the coherent and interference scattering effects in this
case are the most considerable. Moreover, in some cases
it is possible to develop methods and approximations to
describe the scattering process in thin layers of matter,
which significantly simplify the analysis of the scatter-
ing process. One of them is based on the consideration
of the scattering process in the Born approximation of
the quantum scattering theory. The present paper aims
to analyze the fast particles scattering in a crystal in this
approximation. It was shown that in the Born approxi-
mation it is possible to consider easily the contribution
of atoms arrangement in matter to the scattering and to
examine from a single point of view the fast particles
scattering in thin crystals both when particles fall on the
crystal along one of its crystallographic axes and planes.
The main attention is paid to the analysis of the applica-
bility conditions of the Born approximation in this prob-
lem and to the comparative analysis of the scattering
characteristics for the different atoms arrangement in
the crystal relatively to the incident beam.
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1. DIFFERENTIAL CROSS SECTION
OF FAST PARTICLES SCATTERING
IN MATTER

Let us consider the fast charged particle scattering at
small angles in a thin layer of matter. The potential en-
ergy of particle interaction with the atoms of the me-
dium in this case is the sum of the potential energies of
its interaction with each atom:

U = ) -7, ()
JF—]
n=1
where 7, is the position of atom in the medium and N is
amount of atoms in the medium.

The potential energy U/{7) is a complicated coordi-
nate function, depending on the atoms arrangement in
the medium, which can be either regular (crystal) or
random (amorphous medium). Therefore, to describe
the scattering process in such structures, it is important
to choose efficient approaches and approximations,
which make it possible to carry out calculations in fields
of complex configuration. Such methods, particularly,
include methods based on the Born and eikonal ap-
proximations of the quantum scattering theory, since
one does not need to specify the 17{7) function.

So, for half-integer spin particles the differential
scattering cross section averaged over the polarizations
of the initial particles and summed over the polariza-
tions of the final states has the following form in the
first Born approximation [5]:

der =7 2 f g
= el (i) @

where do is the solid angle element along the scattering
direction, & is the particle energy, U, is the Fourier
component of U(¥) and § — g — §' is the transmitted

momentum to the external field when the particle was
scattered.

Substituting in (2) the potential energy of the parti-
cle interaction with atoms of the substance (1), we ob-
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tain the following expression for the scattering cross

section:
N
iqr,

z Qz_ﬁu
) n=l1
where doM)/do is the scattering cross section in the
field of a separate atom of the medium [5]
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and u, is the Fourier component of the potential energy

of the particle interaction with a separate atom of the
medium. Thus, in the first Born approximation, the scat-
tering cross section in a substance differs in the diffrac-
tion factor D from the corresponding cross section of
scattering by a single atom of the medium:

=

D=

5 dE
Eigf—.f‘ )
n=

If there are no diffraction effects in scattering, then
D = N, and therefore,
do dg (1)
- = 6
do N do ©

This situation corresponds to the particles scattering
in a rarefied medium, when the atoms are at large dis-
tances from each other.

At high energies, the particles scattering angles in a
substance are typically small compared to unity. More-
over, if scattering occurs in a thin layer of a substance,
then under the condition

qL<<l, (7)

=2
where q; = :—p is the longitudinal component of the

transmitted momentum  and L is the target thickness,
in (3) we can neglect the dependence of the scattering
cross section on ;. In this case, the diffraction effects in
scattering are determined only by the distribution of
atoms in the target in the plane orthogonal to p. More-
over, in particular, if all the atoms are located along a
line parallel to g, then, according to (3),
Ii ‘I
47 _ 227 ®)
do do
The proportionality of the scattering cross section to
the squared number of atoms in the target in this case
indicates a coherent scattering effect.
The applicability condition for the Born approxima-
tion in describing the process of coherent scattering by a
string of crystal atoms (8) has the following form [4]:

NZe?
; w1, 9)
1w

where Z|e| is the charge of the nucleus of an atom in the
string and w is the particle velocity. This condition is
rapidly violated with increasing the number of atoms in
the string. In description of the process of particles scat-
tering by a string of atoms, in this case, it is necessary to
go beyond the Born approximation. Such description for
high energies could be based on the eikonal approxima-
tion of the quantum scattering theory. The differential
cross section of scattering for unpolarized particles in
this approximation has the following form [4]
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where g = (x,y) are coordinates in orthogonal to ¢

plane and y() is the scattering phase,

x(P) = —% j dzl(g,z) .

(11)

The formula (10) is valid for fast particles scattering
at small angles in a localized field I7(¥), provided that
the particle motion in this field is close to rectilinear one
[4]. This requires that corrections in the eikonal scatter-
ing phase are small. This requirement is satisfied at suf-
ficiently high particle energies, since the noted correc-
tions are proportional to p~* [4]. As for the magnitude

of the scattering phase |x(g}|, it can be either small or

large compared to the Planck constant 7 .

Under the condition:

lx(p)l « f (12)
we can expand (10) with the small parameter y{p)/f. In
the first non-vanishing approximation of this expansion,
formula (10) transforms into the corresponding result of
the Born approximation (2). Thus, inequality (12) is an
applicability condition of the Born approximation for
describing the fast particles scattering in matter.

For particles scattering on a string of atoms, condi-
tion (12) leads to the inequality (9), which determines
the applicability condition of the Born approximation
for the problem of fast particles coherent scattering in a
thin crystal. When a particle is scattered in an amor-
phous medium, inequality (12) can be written in the
following form:

L Ze*

o L, (13)
where L is the target thickness and /j=p is the mean free
path of a particle in a substance between its successive
collisions with atoms. Here, L/lj;=p represents the num-
ber of collisions of a particle with atoms during the pas-
sage of a target of thickness L. If condition (13) is vio-
lated, it is necessary to consider effects associated with
the multiple particle scattering by atoms in an amor-
phous medium.

2. BORN APPROXIMATION FOR THE FAST
PARTICLES ELASTIC SCATTERING
CROSS SECTION IN ORIENTED CRYSTALS

Let us consider the fast charged particles scattering
in a thin crystal at small angles as particles fall along
one of the crystallographic axes (z axis). By the thin
crystal we mean a crystal which thickness satisfies con-
dition (7). In this case, the particle scattering cross sec-
tion in the first Born approximation is determined by
formula (3).

The positions of atoms in the crystal have a periodic
structure with a small positions deviation t, of each
atom relatively to its equilibrium  positions
i = By, Zq

F=70+1,. (14)

This spreading of atoms positions is due to atoms

thermal vibrations in the lattice and it leads to necessity
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of averaging the formula for the scattering cross section

(3). Let us assume for simplicity hereafter that the i,
distribution function is Gaussian

fl)=——re
(2mu?) ?

(15)
with the mean squared amplitude of the thermal vibra-
tions of atoms along each crystallographic axis equal to
u?=uj — uj — uz. Firstly, let us consider the simplest
case of a particle scattering on a string of N, atoms lo-
cated along the direction of the incident particles mo-
mentum, z-axis. As a result of averaging over atoms
thermal vibrations, in this case we find the following
expression for the mean value of the scattering cross
section (3) at small angles

d2a 727
ax? {H; —wf1 T gl ”
g1 ;

The first term in (16) does not depend on the atoms
arrangement in strings. This term determines the inco-
herent effects in scattering. The interference effects in
the particle (plane wave) scattering by crystal atoms are
determined by the second term in (16).

Now we consider the scattering on a set of strings of
atoms in the crystal, located periodically in the (x, y)
plane, orthogonal to the momentum  of the incident
particles. Later we will consider the simplest version of
the atoms distribution in such crystal, corresponding to
a crystal with a cubic lattice with distance a between
atoms along each axis. From the energy and momentum
conservation laws it follows that the longitudinal com-
ponent of the transmitted momentum ¢, is determined
by the relation

qi +¢%
=g (17)

For a fixed value of the transverse component of the

transmitted momentum ¢q; = ./ ai+ QE and sufficiently

high values of the particle energy, condition (7) is al-
ways satisfied. Under this condition we can neglect the
dependence of the scattering cross section (16) on g..
The diffraction factor in (16) in this case after averaging

over atoms thermal vibrations has the following form
; I,!.!:_r_:\.

D=Hz(1—e__='_ﬁ +
& iz _ar (1)
+ N N e e ,
T ilyy= 1

where N,, N, and N, are numbers of atoms along x, y and
z axes, N = N, N, N, is the total amount of atoms in the
crystal.

The quadratic dependence of the diffraction factor
on N, leads to a coherent scattering effect in the pro-
vided case of the crystal axes orientation relatively to
the direction of the incident particles momentum. In
particular, for scattering in crystal on its separate string
of atoms located strictly on the z axis, the scattering
cross section (18) transforms into the corresponding
result (16) of the coherent scattering theory for particle
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scattered by a string of atoms (in this case, N, =N, = 1
and n* = 0).

If the positions of crystal strings axes in the trans-
verse plane form a random structure, then averaging
over the positions of the strings of atoms in the trans-
verse plane, we obtain the following expression for the
differential scattering cross section in this case

d?a 1
(

qg uZ (1 9)
_a1 2
+NZN, Ne _r:'*'_}|uh| :

Formula (19) shows that with the random arrange-
ment of crystal strings axes in the (x, y) plane, there is
no interference effect in scattering on different strings of
atoms, while during scattering on each string of atoms
the coherent effect is present.

When atomic strings are periodically arranged in the
transverse plane, summation in the diffraction factor
(18) leads to the following result

, sin*(N,aq,/2h) sin® (N,aq, /2h)

Deop = . 20
©h T 7% sin(aq./2h)  sin*(aq,/2h) (20)
For large values of N, and N, we obtain
oA (4§
F 4

where §(g | — g} two-dimensional Dirac delta function
2n r

and g =1(g.gy) Z?I!r.'._._.nr] is reciprocal lattice

vector. The differential scattering cross section in this
case has the following form _
d’oc. N _a®
=)l=7=1|1-¢ ® |+
dgi 4w

(2m)? g —gy i z
+AI2TZ{F( 7 JE BT |T.Iql| .

(22)

It follows from formula (22) that in addition to the
coherent effect of scattering on each string of atoms in
this case, there is also an interference effect of particle
(plane wave) scattering on different strings of atoms.
Due to the interference effect, the transmitted pulse
transverse component has discrete values ¢, = g. In the
term in (22), which determines incoherent effects in
scattering, there is no such interference effect.

Thus, the differential cross section for fast charged
particles scattering in a thin crystal substantially de-
pends on the arrangement of atoms and groups of atoms
in the target. In this case, when particles move along
one of the crystallographic axes, both coherent effect in
scattering by crystal strings of atoms and interference
effect associated with scattering by different strings of
atoms are possible. Considering the thermal spread of
atoms positions in the lattice leads to a splitting of the
cross section into the sum of coherent and incoherent
cross sections. The incoherent scattering cross section
does not depend on the location of atoms in the target
and slightly differs from the corresponding scattering
cross section in an amorphous medium.
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3. SCATTERING BY CRYSTALLINE
PLANES OF ATOMS

Of particular interest is the case of the fast charged
particles incidence on a crystal along one of the crystal-
lographic planes, since the scattering of particles in dif-
ferent directions are in this case of different types. In
this connection, we consider scattering by a system of
crystalline planes periodically arranged along the x-axis
(Figure), assuming for simplicity that atoms positions in
each of planes are equally probable (the x-axis is per-
pendicular to the crystalline planes of atoms (y,z)).

The averaging procedure of the scattering cross sec-
tion (3) in this case is connected to the diffraction factor
(5), in which the position components 7, = (x,,, V.2, )
of each atom have the following form

Xp =AMy +Un ns Vo~ Ynon, 23)

T o=

7
I P
where index ti,, is a plane of atoms index number, 1, is

is thermal

atom index number in the plane and u,_,

deviation of n,,-th atom in 7,-th plane from the x-axis.

Scattering by periodic planes of atoms
with homogeneous distribution of atoms

Using (23) we obtain the following expression for
diffraction factor D:

T AL

]"—l

N,
o
Bt n, T Gy Yo m, T QzZn n, (24)
X exp |t B
h
nP:1

where N, is the number of crystalline planes arranged
along x-axis and N, is the number of atoms in each
plane (it is assumed that the numbers of atoms in each
plane are the same).

Due the equiprobability of the positions of atoms in
each plane and assuming that the law of thermal dis-
placement of each atom along the x axis has a Gaussian
form with the same squared displacement along this axis
equal to u?, we arrive at the following expression for

the average value of the diffraction factor D:
N, N [=73)

(D)= l_[l_lfduu. J.f ,u.x.)

kEe=1kp=1—co

L},,fz L./2 (25)
. [ d.’l’.{.—x.a—g J dzl.'x. kp )
L, L, !
_L_)_f."g - -Lg/
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where L, and L, are crystalline plane sizes along y- and
z-axis and
1
—=CHp| — (26)
v

2
f ( ) us Kok
Uy = — |.
K iy 2 > 212

The integrals in (25) in each term have the following

structure if m, = n’ and if n, = n’, iy = My,
L,/2 Ly/2 oy
f AV m, f ¢%p¢gﬁgigjﬁﬂﬂ
¥ L'U
- - (27)
2
sin(qyf_._,,‘fzh)
Gy L/ 2h
If i, — mj, and i, = 7y, then this integrals are equal
to unity.

The integrals related to averaging over Znn, and

Znlnl, have a similar structure. However, in this case
under the condition g.L./2 <¢ h all terms of averaging
over these variables are equal to unity.

For m, # n and for r_ 1, # n, integrals of
averaging over the thermal vibrations of 1 atoms have
the following form

— g F
=,

L,/2
dux.nx.npf(ux.nx.np) x
—Ly/2
Ly/2 .
e —
:_Q;r(llx.?zx.ﬂp ux”;.HLJ (28)
x iy, nxnpf [ux.n;.nfr.,)e R
-Ly, /2
_giu?
=e R
—_ ] r .
If n, =n} and n, —ny, then these integrals are

equal to unity.
Substituting obtained averaging results in (25), we
find that

N, Ny N,

(D) = Z Z 1+AZ Z 1+

M=M= nI—nInJ:\En
N, Ny
qxafnx n:r (29)
+4 z Z 1,
J’lx:\‘:l’tx Nty =1
where
2 (sin(q,L,/2h)\
4= S (Anlety/ 2y (30)
qyLy/2h
Adding in (29) to terms containing 7, #n, and
n,#n, summands, terms with n, =7, and, respec-

tively, n, =n. and subtracting similar terms, we obtain
(29) in the form

r
Ny,

(D) = N,N, + AN, z 1-N, |+

¥
Hp.l‘tp

1)

Ny
+AN; e

Mam=1

. i
E.Q'xa( Ny Ty)

—_ N.J.'
As a result, we find that
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sin“(N,q,a/2h)
D) = NN, (1—A) —NIA———————. (32
W il ) 7 sin?(q,a/2h) (32)
For large L, and N/, values we have
aiu® 2
A— J.':q L_:r; (%);
" (33)

in?(N,q,a/2h 2 —
mg(;%ﬁ/ )=NEE§£5G¢ S}
sin?(q,.a/2h) a il

where g = ? and 1 = 0,_1, ... Substituting (33) in

(32) results in

! 2 o ™y
(D) = .\.'I.wp( 1 [Ecs‘[__ ;i*)e‘_?" |
q'\ o q _‘9 qiuz (34)
2_ W X - -
+N,N? 5(h)(1225(—E—Je i

]

Noting that the total number of atoms in the crystal
is N — N,N, and that the number of atoms in each
planeis N, =n L L

L., where n, is the density of atoms

in a separate plane, we find that if L, — =1 the scatter-
ing cross section (3) has the following form

dio (2m)* _-q,
(m): N{l"'HJ_LzT(S(E)X

e

The ﬁrst term in braces determines the incoherent
effects in scattering. This term is proportional to the
number of atoms in the crystal and completely coincides
with the corresponding result of the scattering theory for
amorphous medium. The second term determines the
coherent and interference effect in scattering. This term
has an additional factor proportional to the thickness of
the crystal, due to which the scattering of particles by
the crystal is intensified compared to scattering in
amorphous medium. This intensification of scattering is
connected to correlations in particle collisions with at-
oms of separate crystalline planes of atoms. The number
of such collisions and the corresponding intensification
in the case is in the order of K~L_R fa®.

Delta function §(q, — g) in the second term in (35)
is due to the interference effect in scattering by different
crystal planes arranged periodically along the x-axis.

In the case of particle scattering on the crystal planes
of atoms, there is no Debye-Waller factor in the term
that determines incoherent effects in scattering.

We note that formula (35) can also be obtained from
formula (22) if, deriving the latter, we consider different
deviations of the atoms positions in the x and y direc-
tions and formally set the value of this deviation along

the y-axis as 'u_ﬁ, which tends to infinity. Moreover, in

35)

(22), we should replace the Debye-Waller factor
ITJ_F
e hE

(6]

— -
_gRuf  4yuy
with the @ "% @ A%

and use the relation
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(36)

which can be used if u_f — o0,

Then the last term in (22) is proportional to the
product of the delta-functions:

iz 8(ay — 9,)8(ay) =

4. DISCUSSION

The obtained results indicate that, in the Born ap-
proximation of quantum theory, the cross section of
elastic scattering of fast charged particles in a thin crys-
tal splits into cross sections of coherent and incoherent
scattering. The coherent scattering cross section deter-
mines interference effects in the scattering of a particle
by numerous atoms of a crystal. This cross section sig-
nificantly depends on the orientation of the crystallo-
graphic axes and planes with respect to the motion di-
rection of the particles incident on the crystal. More-
over, if the particle passes the crystal along one of the
crystalline axes, then on the condition
2hp

e
HL

(37)

L« haz'= (38)
there is a coherent effect in scattering by strings of crys-
tal atoms located along this axis. This effect is mani-
fested in the quadratic dependence of the scattering
cross section on the number of atoms in a string. The
scattering cross section in this case is in fact determined
by the continuous potential of the atomic strings of the
crystal, i.e. by the lattice potential averaged over z-axis,
which is widely used in the theory of the axial channel-
ing phenomenon in a crystal [7]. Thus, the concept of
the continuous potential of atomic strings of a crystal
naturally appears in the Born theory of particles scatter-
ing in thin crystals, that is, under conditions when the
channeling phenomenon is absent.

Accounting the periodicity of atoms strings axes in a
crystal in the transverse plane leads to an interference
effect in the scattering of a particle (plane wave) by dif-
ferent strings of atoms, this effect consists in that the
transverse components of the transmitted momentum
are equal to corresponding components of reciprocal
lattice vector, multiplied by integer values. However, if
positions of the strings axes in the transverse plane can
be formally considered random (this situation corre-
sponds to the conditions for the dynamic chaos occur-
rence during particle motion in the crystal [8]), there is
no interference effect in scattering and the values of the
components of the transmitted momentum g, can be
arbitrary.

The incoherent scattering cross section does not de-
pend on the orientation of the crystal axes relatively to
the incident beam. This cross section, however, differs a
bit from the corresponding cross section for particle
scattering in an amorphous medium. The difference is
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due to the presence in the cross section of an additional
term containing the Debye-Waller factor exp(—g7u?).

With this term, the incoherent scattering cross section is
about 10% smaller than the corresponding cross section
in an amorphous medium. For u? — oo, this addend to
the scattering cross section, as well as the coherent scat-
tering cross section disappear, and the scattering cross
sections of particles in an amorphous medium and in a
crystal coincide.

A similar situation with the splitting of the scattering
cross section of fast charged particles in a crystal into
coherent and incoherent components is also possible
with the passage of particles along thin (longitudinally)
crystalline planes of atoms. In this case, however, new
variations of scattering appear due to the different origin
of the atoms distribution in the crystalline planes of at-
oms (regular and random) and the presence of periodi-
cally arranged atomic planes. Moreover, as shown in the
work, for a random arrangement of atoms in each plane
in the incoherent scattering cross section, there is no
term containing the Debye-Waller factor and this cross
section coincides with the corresponding cross section
for the amorphous medium. The coherent scattering
cross section corresponds to the scattering cross section
in the field of the continuous potential of the crystal
planes of atoms (since the momentum transferred with
¢, = 0 contributes to this cross section). We note that

the crystalline planes of atoms consist, generally speak-
ing, of crystal strings of atoms, located in these planes
parallel to each other. In this case, however, if the parti-
cles incidents on the crystal along the crystal strings of
atoms at large angles to these strings (angles about
1 =1 = RE/a), then the correlations between succes-

sive collisions of the particles with the atoms of the
strings are destroyed. Collisions of a particle with dif-
ferent atoms of the plane in this case can be considered
as random. This model of the particle interaction with
atoms of the plane significantly simplifies calculations.
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O KOTEPEHTHOM N HEKOTEPEHTHOM PACCEAHUWU BBICTPBIX 3APAKEHHBIX YACTHUIL]
B YVIIBTPATOHKHUX KPUCTAJIJIAX

H.®. Illlynvea, B./l. Koprokuna

PaccMotpen mporiecc paccestHust OBICTPBIX 3apsDKEHHBIX YaCTHI[ B YIBTPATOHKMX KPUCTalaX Ha OCHOBE OOp-
HOBCKOTO TIPHOJMKCHHST KBAHTOBOM diieKTpoanHaMukid. OCHOBHOE BHHMaHHE OOpAIeHO Ha BOMPOC O PacIerie-
HHUH CEYCHHUS PACCESHUS Ha KOr€PEHTHBIE M HEKOT'€PEHTHBIE COCTABIISIONINE IPU OPUEHTAIIMH OMHOU U3 KPUCTAJLIO-
rpaduyecKuX OCel M IUTOCKOCTEH BIOJb HANPABJIEHHS JBU)KEHHS yacTuIl. IToKa3aHo, 4TO KaKk KOrepeHTHas, TaK U
HEKOrepEHTHAs COCTABJISIONINE CEUSHHUS PACCESHHS CYIIECTBEHHO 3aBUCAT OT OPHEHTALIMH KPUCTAILIOrPpahUUECKUX
oceil OTHOCHTENBHO MaJaroIIero mydka. B 4acTHOCTH, MOKa3aHO, YTO HPH PACCETHUH YaCTHIl HAa KPUCTAUTHUECKUX
TUTOCKOCTSIX aTOMOB CEYCHHE HEKOTEPEHTHOI'O PACCESIHUS HEe COIepKUT (aktop Jebas-Bamiepa.

PO KOI'EPEHTHE I HEKOI'EPEHTHE PO3CIIOBAHHSA HIBUJAKUX 3APAIZKEHUX YACTHUHOK
B YIIBTPATOHKHUX KPUCTAJIAX

M. ®. Illynvea, B./]. Koprokina

PosrisinyTO mporec po3ciroBaHH MIBUAKHUX 3aPsPKEHUX YACTHHOK B YIIBTPATOHKUX KPUCTalax Ha OCHOBI Oop-
HIBCHKOTO HaOJIVKEHHS! KBAHTOBOI elleKTpoArHaMiki. OCHOBHa yBara MpHiJIeHa TUTAHHIO PO3IICIUICHHS Tiepepi3y
PO3CilOBaHHS Ha KOT€PEHTHI 1 HEKOTepEHTHI CKJIJI0BI IPU OpieHTalii OJHi€el 3 KpucTanorpadiqvHuX Ocei 1 IIOMNH
B3JIOBXK HANPSAMKY PyXy YaCTHHOK. [Ioka3aHo, IO SK KOTEPEHTHA, TaK i HEKOrepEeHTHA CKJIAJIOBI Mepepi3y po3cCiro-
BaHHS iCTOTHO 3aJIeXKaTh BiJl OpieHTall KprcTanorpadiyHux oceil BiTHOCHO MaJlalouoro Imydka. 30KkpemMa, Mokas3aHo,
110 MPH PO3CIIOBaHHI YaCTHHOK HAa KPUCTATIYHHX IUIONIMHAX aTOMIB Mepepi3 HEKOrepeHTHOI'O PO3CiIOBaHHS HE Mic-
TUTh (axrop Jebdas-Bamnepa.
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