
USE OF THE WHIRLIGIG PRINCIPLE FOR STABILIZING

THE INITIAL STATES OF SOME CLASSIC AND QUANTUM

SYSTEMS

V.A.Buts ∗

National Science Center ”Kharkiv Institute of Physics and Technology”, 61108 Kharkiv, Ukraine

Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, 61002 Kharkiv, Ukraine

(Received June 15, 2020)

It is shown that the whirligig principle can be used for stabilization of the initial states of some classical and quantum

systems. This feature of the whirligig principle is demonstrated by simple examples. The most important result of

this work is the proof of the fact that the stabilization of the excited states of quantum systems can be realized by

acting not on the quantum system itself, but by acting on the states into which the system must go. Potentially, this

result can be used to stabilize excited nuclear systems.

PACS: 03.65.Xp; 46.40.Ff

1. INTRODUCTION

The principle of whirligig was formulated in [1-5]. It
turned out to be very simple, visual, effective. Let us
briefly recall its main characteristics. The principle
is based on the image of the whirligig. This image
contains simple quantitative conditions for the im-
plementation of stabilization of the initial states of
systems. If the whirligig does not rotate and it is
set upright, then it falls. The time of the fall of the
whirligig can be considered the lifetime of the unsta-
ble state of the whirligig (TL). If the yule rotates and
its rotation period (Tw) is much shorter than the life
time of the whirligig (TL ≫ Tw), then the vertical
position of the whirligig will be stable. It turned out
that such a simple principle is suitable for stabilizing
a large number of excited states of physical systems.
As an example, we point out the stabilization (sup-
pression) of plasma-beam instability, the suppression
of the processes of decay of waves that propagate
in plasma (including the stabilization of explosive
instability). It turned out to be possible to suppress
local instability (by the example of stabilization of
the regular dynamics of the Lorentz system). In this
paper, we consider some other physical systems (clas-
sical and quantum) for which the whirligig principle
also turns out to be useful for stabilizing their initial
states. In section 2 considers a fairly general classical
system. In section 3 – quantum system. The most
important result is the possibility of stabilizing the
states of the quantum system when we will be acting
not on the system itself, but on the states into which
the system can go. Potentially, this 1998result can be

useful for stabilizing nuclear processes such as, for
example, beta decay.

2. STABILIZATION OF THE ORIGINAL
STATE OF THE CLASSICAL SYSTEM

Let’s consider a classical system whose vibrational
properties contain a spectral component at a fre-
quency. This feature of the system can be modeled
by the equation of a linear oscillator:

q̈1 + ω2q1 = 0 . (1)

Let the system in question be at rest at the initial
instant of time. Suppose that in addition to the sys-
tem we are studying, there is another system whose
spectrum also contains the frequency ω. This second
oscillatory system is excited at the initial time. Now
let these two systems turn out to be connected with
a small coupling coefficient (h1 ≪ 1). In this case, it
is convenient to present the mathematical model of
the complete system in the form:

q̈2 + ω2q2 = −h1q1, q̈1 + ω2q1 = −h1q2 . (2)

Due to the connection, the two systems interact. Af-
ter the time (T ∼ ω/h1) the vibrational energy of the
second system at a frequency will be transferred to
the vibrational energy of the first system.

It may turn out that the oscillations of the first
system with such a level of amplitude for one reason
or another are unacceptable. In this case, one can use
(to stabilize the initial state of the first system) the
whirligig principle. For this, we introduce into system
(2) an additional oscillatory system that oscillates at
the same frequency ω. This additional system is only
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connected with the second system. Moreover, the
coupling coefficient between the second system and
the additional system (h2) is much larger than the
coupling coefficient between the first and second sys-
tem (h2 ≫ h1). As a result, a complete system of
equations that describes the dynamics of these three
physical systems (interacting at a frequency ω) can
be written as:

q̈1 + ω2q1 = −h1q2,
q̈2 + ω2q2 = −h1q1 − h2q3, (3)

q̈3 + ω2q3 = −h2q2 .

To analyze the solutions of system (3), we take into
account that the main fast dynamics of this system
(elements of this system) occurs at a frequency ω.
The presence of small bonds between the individual
elements of the complete system (h≪ ω2) allows you
to search solution in the form:

qi = xi(t) · exp(iωt) . (4)

Here xi(t) – are the slowly changing functions.
It is convenient to use the averaging method to

find these functions. As a result, we obtain the follow-
ing system of equation for determination these func-
tions:

iẋ1 = x2; iẋ2 = −µx3; iẋ3 = −µx2 . (5)

Here µ = h2/h1 ≫ 1, ẋ = dx/dτ, τ = (h1/ω)t. It
can be seen that the dynamics of the second system
obeys the equation:

ẍ2 + (1 + µ2)x2 = 0 . (6)

Taken in account that µ ≫ 1, the solutions of the
system of equations (5) can be represented as:

x2 = cos(µτ); x3 = i · sin(µτ); x1 =
i

µ
sin(µτ) . (7)

It can be seen from expression (7) that the oscilla-
tions of the first system now occur with a significantly
lower amplitude than before the introduction of the
third oscillatory system. Thus, the presence of a third
additional oscillatory system significantly limits the
impact (influence) of the second oscillatory system on
the first one.

3. STABILIZATION OF QUANTUM
SYSTEMS

Let’s consider a multi-level quantum system, which
is described by the Hamiltonian:

Ĥ = Ĥ0 + Ĥ1(t) . (8)

The second term on the right-hand side describes the
disturbance. The wave function of system (8) obeys
the Schrodinger equation, the solution of which will
be sought in the form of a series of eigenfunctions of
the unperturbed system:

ψ(t) =
∑
n

An(t) · φn · exp(iωnt) , (9)

where ωn = En/h̄; ih̄
∂φn

∂t = Ĥ0φn = En ·φn.We sub-
stitute (9) into the Schrodinger equation and in the
usual way we obtain a system of coupled equations
for finding complex amplitudes An:

ih̄ · Ȧn =
∑
m

Unm(t) ·Am , (10)

where Unm =
∫
φ∗
m ·Ĥ1(t) ·φn ·exp[i ·t ·(En−Em)/h̄] ·

dq. We consider the simplest case of biharmonic per-
turbation Ĥ1(t) = Û0 ·exp(iω0t)+Û1 ·exp(iω1t). Then
the matrix elements of interaction will acquire the fol-
lowing expression:

Unm = Vnmexp{i · t · [(En − Em)/h̄+Ω]} . (11)

Here V
(k)
nm =

∫
φ∗
n · Ûk · φm · dq, Ω = {ω0, ω1}.

Let’s consider the dynamics of a three-level sys-
tem (|0⟩, |1⟩, |2⟩). We assume that the frequency of
the external disturbance and the eigenvalues of the
energies of these levels satisfy the relations:

m = 1, n = 0, h̄ω0 = E1 − E0; m = 2, n = 0 ,

h̄(ω0 + ω1) = E2 − E0, h̄ω1 = E2 − E1 . (12)

Relations (12) indicate the fact that the frequency ω0

of the external disturbance is resonant for transitions
between the zero and first levels, and the frequency
ω1 is resonant for transitions between the first and
second levels. Using these relations in system (10),
we can restrict ourselves to three equations:

iȦ0 = A1, iȦ1 = A0 + µA2, iȦ2 = µA1 . (13)

It is convenient to represent the system of equations
(13) in a slightly different form:

Ä1 +Ω2A1 = 0, iȦ0 = A1, iȦ2 = µA1 , (13a)

where Ω2 = (1 + µ2).
The scheme of energy levels in this case is pre-

sented in Figure.
In (13) for simplicity and convenience we put

V12 = V21; V10 = V01; Ȧi = dAi/dτ, τ = V10 · t/h̄. In
addition, a parameter µ = V12/V10 has been entered.
Consider the most interesting special cases.

The scheme of energy levels
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Let, at the initial moment of time (t = 0), the sys-
tem under consideration be at the first excited level.
Then, as is easy to see, the solutions of system (13)
are the functions:

A0 =
1

i · Ω
sin(Ω · t), A1 = cos(Ω · t),

A2 = −i sin(Ω · t) . (14)

It follows from solution (14) that the larger the pa-
rameter µ, the less probability it will be that the sys-
tem will switch from an excited state to an unexcited
(A0) stationary state. A few words should be said
about the parameter µ. Physically, this parameter
determines the ratio of the number of quanta of the
low-frequency disturbance, which is responsible for
the transitions between the first and second levels to
the number of quanta of the high-frequency distur-
bance, which determines the transitions between the
first and zero levels. The larger this ratio, the less
probability it will be that the excited system goes
into an unexcited state [6]. Excited, we consider the
first and second levels.

We will solve the problem with the initial condi-
tions |A0(0)|2 = 1, |A1(0)| = |A2(0)| = 0, i.e. at
the initial moment of time, the system is in the main
unexcited level, and the fast dynamics is carried out
by those levels to which the system from the initial
level should go under the influence of an external RF
disturbance. In this case, the expressions for the am-
plitudes of the wave functions take the form:

A1 = −(2i/Ω) sin(Ωt), A0 = 1− 1

Ω2
[1− cos(Ωt)] ,

A2 =
2µ

Ω2
[1− cos(Ωt)]. (15)

An important and somewhat unexpected result fol-
lows from the form of solutions (15). It consists in
the fact that if the parameter µ is enough large, then
despite the fact that the external stabilizing influence
does not affect the ground state of the system, how-
ever, this state is stable. Thus, it is possible to stabi-
lize the unstable states of quantum systems not only
by acting on the states in which the quantum system
is located, but by acting only on those states (mak-
ing them dynamic) into which the system must go.
This result is qualitatively different from the quan-
tum Zeno effect.

An even more interesting case is when the initial
state of the system is an excited state. Under the
action of an external resonant perturbation, the sys-
tem under consideration should go into another state
with lower energy. However, using the principle of
whirligig, one can stabilize this excited state. We
show this result. Let the system be in the upper ex-
cited state A2(0) = 1 at the initial moment of time.
Between matrix elements there are such ratios:

V01 = V10 ≫ V12 = V21; µ = V01/V12 ≫ 1;

A0(0) = A1(0) = 0; τ = V12 · t/h̄.

Taking into account these relations, the system of
equations (13) takes the form:

iȦ0 = µA1; iȦ1 = µA0 +A2; iȦ2 = A1 . (16)

The solutions of these equations are the functions:

A0 =
µb

iΩ
cosΩt; A1 = b sinΩτ ;

A2 = 1− b

iΩ
cosΩτ ; b→ 0(1/µ) . (17)

It is seen that the probability of the system being
in the excited state is the closer to the initial state
(excited), the greater the coefficient µ. This case is
especially interesting when we cannot influence on
the system we want to stabilize with an external dis-
turbance. However, we can change the nature of
those energy levels to which an excited system can
go (transform them into dynamic levels). Potentially,
this situation may arise when trying to stabilize some
excited nuclear states, for example, to suppress the
beta-decay process.

4. CONCLUSIONS

Let’s state the most important results of the work:

• First of all, the examples discussed above show
that the principle of whirligig is really very sim-
ple and effective. It can be used both to stabi-
lize classical systems and quantum systems.

• The above examples have been simplified as
much as possible. This was done specially.
There was desire to make the results as accessi-
ble as possible for understanding and for repro-
ducing these results. In the considered mod-
els, for example, spontaneous emission was not
taken into account anywhere. We limited only
by induced processes. It is clear that most of
the more complex models should in their vari-
ants receive results that are similar to the re-
sults obtained above.

• Special attention deserves the results, which
show that it is possible to stabilize the state of
quantum systems without affecting these states
themselves, but by changing the dynamics of
the states into which these systems must go.
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ÈÑÏÎËÜÇÎÂÀÍÈÅ ÏÐÈÍÖÈÏÀ ÞËÛ ÄËß ÑÒÀÁÈËÈÇÀÖÈÈ ÈÑÕÎÄÍÛÕ
ÑÎÑÒÎßÍÈÉ ÍÅÊÎÒÎÐÛÕ ÊËÀÑÑÈ×ÅÑÊÈÕ È ÊÂÀÍÒÎÂÛÕ ÑÈÑÒÅÌ

Â.À.Áóö

Ïîêàçàíî, ÷òî ïðèíöèï þëû ìîæåò áûòü èñïîëüçîâàí äëÿ ñòàáèëèçàöèè èñõîäíûõ (íà÷àëüíûõ) ñîñòî-
ÿíèé íåêîòîðûõ êëàññè÷åñêèõ è êâàíòîâûõ ñèñòåì. Òàêàÿ îñîáåííîñòü ïðèíöèïà þëû ïðîäåìîíñòðè-
ðîâàíà íà ïðîñòûõ ïðèìåðàõ. Íàèáîëåå âàæíûì ðåçóëüòàòîì ðàáîòû ÿâëÿåòñÿ äîêàçàòåëüñòâî ôàêòà,
÷òî ñòàáèëèçàöèþ âîçáóæäåííûõ ñîñòîÿíèé êâàíòîâûõ ñèñòåì ìîæíî ðåàëèçîâàòü âîçäåéñòâèåì íå íà
ñàìó êâàíòîâóþ ñèñòåìó, à âîçäåéñòâóÿ íà ñîñòîÿíèÿ, â êîòîðûå ñèñòåìà äîëæíà ïåðåéòè. Ïîòåíöè-
àëüíî ýòîò ðåçóëüòàò ìîæåò áûòü èñïîëüçîâàí äëÿ ñòàáèëèçàöèè âîçáóæäåííûõ ÿäåðíûõ ñèñòåì.

ÂÈÊÎÐÈÑÒÀÍÍß ÏÐÈÍÖÈÏÓ ÄÇÈÃÈ ÄËß ÑÒÀÁIËIÇÀÖI� ÏÎ×ÀÒÊÎÂÈÕ
ÑÒÀÍIÂ ÄÅßÊÈÕ ÊËÀÑÈ×ÍÈÕ I ÊÂÀÍÒÎÂÈÕ ÑÈÑÒÅÌ

Â.Î.Áóö

Ïîêàçàíî, ùî ïðèíöèï äçè è ìîæå áóòè âèêîðèñòàíèé äëÿ ñòàáiëiçàöi¨ âèõiäíèõ (ïî÷àòêîâèõ) ñòàíiâ
äåÿêèõ êëàñè÷íèõ i êâàíòîâèõ ñèñòåì. Òàêà îñîáëèâiñòü ïðèíöèïó äçè è ïðîäåìîíñòðîâàíà íà ïðîñòèõ
ïðèêëàäàõ. Íàéáiëüø âàæëèâèì ðåçóëüòàòîì ðîáîòè ¹ äîêàç ôàêòó, ùî ñòàáiëiçàöiþ çáóäæåíèõ ñòàíiâ
êâàíòîâèõ ñèñòåì ìîæíà ðåàëiçóâàòè âïëèâîì íå íà ñàìó êâàíòîâó ñèñòåìó, à âïëèâàþ÷è íà ñòàíè,
â ÿêi ñèñòåìà ïîâèííà ïåðåéòè. Ïîòåíöiéíî öåé ðåçóëüòàò ìîæå áóòè âèêîðèñòàíèé äëÿ ñòàáiëiçàöi¨
çáóäæåíèõ ÿäåðíèõ ñèñòåì.
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