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Convective mass transfer in a cylindrical viscous incompressible conductive fluid layer in an inhomogeneous
temperature field and in the external magnetic field of the vacuum arc current through it is theoretically investigated
in this work. For a horizontal layer of a viscous, incompressible, conducting liquid of a cylindrical shape, located in
a temperature field inhomogeneous in height and in an external magnetic field of a vacuum arc current flowing
through it, the original equations are written. These equations consist of linearized equations for small velocity per-
turbations, small deviations from the equilibrium values of temperature, pressure, and magnetic field strength. The
considered boundary value problem is solved for the case of free boundaries. Comparison of the experimental data
with theoretical calculations made it possible to determine the rotation velocity of the steel melt during vacuum arc

melting.
PACS: 47.20.—k, 47.20.Bp, 65.20.—w, 65.20.Jk

INTRODUCTION

In some metallurgical plants liquid metal mixing is
used to improve the quality of the final product and re-
duce the energy intensity of the production. High-
quality mixing of a liquid metal can be provided by gas
stirring or by electromagnetic mixing methods [1]. One
of the electromagnetic methods of mixing liquid metal
is realized in direct current arc furnaces (DCAF), where
electric vortex flows (EVF) are used [2].

In the process of smelting in DCAF the metal can be
conventionally represented as a horizontal layer of a
viscous incompressible fluid with a vertical temperature
gradient and a direct current distributed over its volume.

In turn, due to the temperature gradient the convec-
tive motion of a liquid viscous incompressible conduc-
tive metal with a current flowing through it is subject to
the effect of magneto-hydro-dynamic forces, which can
affect its convective motion and adjust the equilibrium
conditions of its existence. The magnetic field trans-
forms the direction of the convective flow of the con-
ducting fluid into a transverse direction, and thus, in
some cases, can have a certain effect on the convection
process. This effect is due to the allowance for the mag-
netic field in the Rayleigh problem on the equilibrium
of a horizontal fluid layer [3]. Taking into account the
magnetic field leads to increasing the number of un-
known variables and characteristic parameters in the
Rayleigh convection equations. Therefore, in the char-
acteristic equation of the convection problem, taking
into account of magneto-hydro-dynamic forces can lead
to the emergence of new solutions describing monoton-
ically unstable or vibrational states of a heated from
below horizontal layer of a viscous incompressible flu-
id.

For the first time, the existence of such solutions is
indicated by the studies of W. Thompson for free
boundaries [4] and S. Chandrasekhar for rigid and free
boundaries [5, 6].
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The simplest case of isothermal layer boundaries,
when a constant magnetic field and gravity act in the
same direction, was investigated in [5]. The dependence
of the Rayleigh number on the Hartmann number char-
acterized the magnetic field strength was determined
analytically for the case of monotonically stable pertur-
bations. The critical values of the Rayleigh numbers and
the corresponding critical wave numbers for this case
were calculated. The critical values of the Rayleigh
numbers and the corresponding critical wave numbers
for rigid bounding surfaces or for one free bounding
surface and the other — rigid were investigated numeri-
cally. It is shown that in all cases the critical Rayleigh
numbers increase with increasing magnetic field
strength and at high magnetic fields cease to depend on
the type of boundaries. It is also shown that the critical
Rayleigh numbers are determined only by the vertical
component of the external magnetic field.

In the case, when the applied magnetic field acts in
the direction different from the direction of gravity, it is
found that, when they are various-directional, the con-
vection, which occurs at ultimate stability, has the shape
of shafts elongated in directions parallel to the plane
containing the vectors of the magnetic field and gravity
[6].

The theoretical conclusions [4 - 6], that an increase
in the magnetic field strength increases the stability of
the fluid convective motion and leads to reduction in
horizontal dimensions of convective cells, are con-
firmed in a series of Y. Nakagawa's experimental works
[7, 8].

These papers describe experiments on magnetic
suppression of thermal convection in horizontal layers
of mercury heated from below. A large cyclotron mag-
net of diameter 36 % inch adapted for hydromagnetic
research was used in these experiments. Using layers of
mercury of a depth of 3 to 6 cm and magnetic fields of a
strength of 500 to 8000 G it was possible to determine
the dependence of the critical Rayleigh number for in-
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stability onset on the non-dimensional parameter O,
where O) = oH’h*/7°pvix H — field density; o — electric
conduction; v — kinematic viscosity coefficient; p — den-
sity and % — layer depth. The parameter O, varied in the
range from 40 to 1.6x10°.

The conclusion [5] that the horizontal magnetic field
does not affect the stability of equilibrium has been ex-
perimentally confirmed in [9]. In this work it has been
also shown that under the action of a horizontal magnet-
ic field the convection occurs in the form of rolls elon-
gated along the field.

The conditions for vibrational-convective instability
of a conducting medium in a magnetic field were de-
termined in [10]. It was concluded that vibrational in-
stability arises if the electrical conductivity ¢ and ther-
mal diffusivity y of the medium satisfy the condition
4noy/c? > 1, and if the magnetic field strength is greater
than a certain critical value H > H.,,.

The general theory of perturbation spectrum and
convective stability of the mechanical equilibrium of a
conductive fluid in a magnetic field was developed in
[11 - 13], which were later described in details in [14].

In stated above works the convection was studied in
a Cartesian coordinate system in rectilinear magnetic
fields. The main conclusions are that the horizontal
component of the external magnetic field strength does
not affect the critical Rayleigh numbers, but orients the
arising convective rolls in its direction. The vertical
component of the external magnetic field strength leads
to increasing the critical Rayleigh numbers by a magni-
tude proportional to its square. With increasing the
magnetic field strength the stability of the fluid convec-
tive motion increases and the horizontal dimensions of
the convective cells decrease. At high magnetic field
strengths the critical Rayleigh numbers cease to depend
on the type of boundaries.

However, rectilinear magnetic fields and the conclu-
sions obtained while studying their effect on convection
are applicable only in specially created experimental
conditions, which reduces their practical value.

The aim of this work is to study the stability of a
viscous incompressible conductive cylindrically shaped
fluid layer in an inhomogeneous temperature field and
in an external azimuthally symmetric magnetic field
created by a vacuum-arc discharge current flowing
through the fluid.

1. THE INITIAL EQUATIONS
FOR A VISCOUS CONDUCTIVE
INCOMPRESSIBLE FLUID LAYER
IN AN INHOMOGENEOUS TEMPERATURE
FIELD AND IN A CYLINDRICAL VOLUME
LOCATED IN AN EXTERNAL MAGNETIC
FIELD

The initial equations describing convection of a vis-
cous conductive incompressible fluid layer in an inho-
mogeneous temperature field and in a cylindrical vol-
ume located in an external magnetic field will be written
in general form. However, in the final notation, due to
the symmetry of the problem, they will be presented in a
cylindrical coordinate system.

92

Let us describe the basic data of the problem being
solved.

Low-carbon steel melt (viscous conductive incom-
pressible fluid) is located in a cylindrical volume of a

radius R, . The lower and upper boundaries of the liquid
volume coincide with the planes z=0 and z =#4. The
magnetic field in the fluid is created by a direct current
flowing between the anode and cathode of the vacuum-
arc installation 7=0.8....1.2 kA (Fig. 1 [15]) and is
axially symmetric H,(r)=H,(r)-¢,=h,(r/R.)"E,
[16], where é, — azimuthal unit vector in a cylindrical
coordinate system; r — distance from the axis of a cy-
lindrical volume to a fluid element; /4, — constant. The
chosen dependence of the magnetic field on the radius
inside the melt is model and reflects the fact that the
melt can be considered as a cylindrical conductor with a
current.

The temperature distribution inside the cylinder
T,(z), similar to [3], is assumed to be set in such a way
that the temperature of the lower boundary is higher
than the temperature of the upper: 7y(0)=T5, T (h) =T,

(1, > 1}). In this case, we assume that in a state of equi-
librium the temperature distribution is described by a
linear function of the vertical coordinate =z :
VT,(z)=-©h"'é., where ®=T,—T - temperature
difference between the bottom and top planes; €. — unit
vector directed perpendicular to the fluid layer vertically

upwards.
Let us write down the linearized equations for small

velocity perturbations Vv and small deviations from the

equilibrium values of a temperature 7 (z) +T, pressure

P, + P, and magnetic field strength H, (r)+H . These

equations describe variation of perturbed magnitudes in
space and time, and with no of viscous dissipation and
Joule heating of the fluid, they can be represented in the
form [14, 17]:

v - H,H .
@=—lv p+—2— |+VvAV+g BTe, +
ot P 4 )

(1)
s gla,
drp\ R, *
or @ .
V6. = yAT, 2
Py x 2
6[—21 7. == e =
= _h|—eV|v= , 3
ot O{R[ K JV Aro ®)
div(v) =0, (4)
div(ﬁ):o, )

where v — small perturbations of the velocity of an el-
ementary volume of a fluid in coordinate system rotated

with a frequencyQ =Q-é ; 7 — radius-vector of the

fluid element; p — fluid density; V — gradient opera-
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tor; A — Laplace operator; g — gravitational accelera-
tion directed against the axis z ; y — fluid temperature
diffusivity coefficient; v — fluid kinematic viscosity
coefficient; S — fluid volumetric thermal expansion
coefficient; ¢ — light speed; o — fluid electrical con-
ductivity.

1 B
ol .
Vacuum <«— ' q
T i e b
2 ' < @c
/ - M

M | T

Fig. 1. Scheme for obtaining of oxide dispersion
strengthened steels using vacuum arc remelting:
1 — corona; 2 — electrode (cathode) to be melted;

3 — liguid metal; 4 — ingot; 5 — copper crystallizer
(anode); 6 — cooler (water); 7 — cavities with alloy
additive; 8 — quartz glass window; a — direction of elec-
tric current; b — circular motion of metal in horizontal
plane; ¢ — motion of metal in vertical plane

For a liquid located in a solid massif with tempera-
ture diffusivity coefficient x, and electrical conduc-
tivity coefficient o, , the equations (1) - (5) should be
supplemented with equations describing variation of
temperature 7, and magnetic field strength F]m in the

massif:
or oH 2
= ZW[ATW[’ = - AHm' (6)
ot ot 4no,

At the boundaries of the liquid and the massif the
velocity vanishes, and the temperature and heat flux are
continuous [14]:

o =0,(%,(2)+ 7).y =T, |0,

z=h

oT or, - o

o my ol | 0=l %)
o’ rot, (FI) o = 0;1 o, ([:Im ) .
Z=h =0

where x and x, — temperature diffusivity coefficients
of the fluid and the massif respectively; n — normal to
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the boundary; rot, (;1) — tangential component of the

operator rot(;l) .

In dimensionless variables the system of equations
(1) - (5) takes the form:

ov =(. r E L~
m = —V[p +R—EME¢HJ+Av+RTeZ + (8)
| ev|i P e - AT, 9)
R 7 ot ’
61-31 A P =
PME—M(R—EGQJVJV:M‘[, (10)

div(v)=0, div(H)=0, (11)

where

h, hz/v, z/h,0, pv;(/hz, (47 /he) pvo

are chosen as the units of measurement of distance,
time, velocity, temperature, pressure and magnetic field
strength. The equations (8) - (10) contain dimensionless

variables: R=gBh'®/(vy) - the Rayleigh number,

P=v/y and B, =4rwovc” - the Prandtl number and
Prandtl respectively,

M= x/ghoh/(c pv) — the Hartmann number.

The amplitudes of dimensionless perturbations in

fluid-bounding massifs are described by the equations:
or .~ 61-:1 P

P—"=3AT,, P,—"=6AH,, (12)

ot ot

m

the  magnetic number,

where, 7 =y,/x,6 =00, .
In this case, the boundary conditions take the form:

- T orT
V|:0 =0,T|_0=Tmh:0,r<6— = u ,
=1 -1 -1 on |.-o, on |.-o,
=1 z=1 (]3)
il =d| ot (H)‘ =érot (A, ] -
o 20 -

The amplitudes of temperature and magnetic field
strength perturbations determined from equations (12)
should tend to zero at large distances from the fluid
boundaries.

2. DEFINITION AND SOLUTION
OF THE BOUNDARY VALUE PROBLEM
ON STABILITY OF CONVECTIVE MOTION

IN A LAYER OF A VISCOUS

INCOMPRESSIBLE CONDUCTIVE FLUID
OF A CYLINDRICAL SHAPE

IN AN EXTERNAL MAGNETIC FIELD
OF THE VACUUM ARC CURRENT
FLOWING THROUGH IT

We assume that all perturbed variables of the system
of equations (9) - (15) depend on time and azimuthal
coordinate in the form:
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v, (7t)=v(r,z)-exp(-At+imp),
1) =9(r,z)-exp(—At +imp),

7 (14)
H_(7t) =y (r,z)-exp(-At +imp),

where v(r,z),3(r,z), v (r,z) — amplitudes of per-
turbed velocity, temperature and magnetic field
strength; m =0;1;2;... — azimuthal mode, which deter-
mines the dependence of solutions on the azimuthal
angle ¢ .

This assumption allows obtaining from equations
(8) - (12) with boundary conditions (13) the boundary
value problem for determining the eigenvalues A .

Proceeding similarly to [14], we substitute solutions

of the form (14) into equations (8) - (12). Then we apply
the operation rot(rot(...)) to equation (8), and take the

projection of the resulting equation onto the axis z. As a
result, we obtain an equation relating amplitudes of dis-
turbances:
—AAV = AAV+RA 9 +iM (m/R,)Ay. (15)
As a result of the indicated substitution of solutions
(14) into equations (10), it takes the form:
—AP3=A3+v, (16)
and from the equation (10) we use only its projection
onto the axis z :
—-AP,w = Ay +iMvm/R, . (17)
The Laplace operator in the cylindrical coordinate
system is used in equations (15) - (17):
2 2 2
A... =l£(ra—j—m—+a— =A ..+ - .
ror\ or r oz* - oz
Solutions of the system of equations (18) - (20) can
be represented in the form:

V(r,z) =AJ, (kmr)sin(nﬂz),

3(r,z)=BJ,, (k,r)sin(nzz), (18)
w(r,z)=CJ, (k,r)sin(nnz),
where n=1,2,3... — the integers determined the vertical

mode of perturbation, J, (x) — the Bessel function of

the first kind of m-th order and the constants A4, B, C sat-
isfy the system of equations:
K2 (K2-2)A-RK:B —iMRﬂKiC =0,
A+(AP-K})B=0, (19)
(2P, -K2)C+im 4=,
R,
where K2 =k +(nx)’ .

For ideally heat-conducting boundaries and under
the condition of infinite electrical conductivity the
boundary conditions (13) are satisfied automatically.

In the case of stable solutions we assume A=0.
Then from (19) follows the critical Rayleigh number:

R=k; ((K; ) +(Mm/R.Y (K> )) (20)

Let us consider some corollaries followed from the
expression (20).

With no magnetic field (the Hartmann number is ze-

ro M=0) or for axially symmetric perturbations
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m=0, it follows from (20) that the critical Rayleigh
number corresponds to the critical Rayleigh number of a
cylindrical convective cell with free boundary condi-
tions with the wave number k,=o ,R.', where

i

o,; — i-th zero of the Bessel function of the first kind of

the first order [18].

In the general case, as follows from (20), the expres-
sion for the critical Rayleigh numbers of a layer with
free boundary conditions does not contain numbers P
and P, , but depends on the Hartmann number and the

radial and vertical wave numbers.
The critical Rayleigh number has a minimum at

(km )min = \/A+ + A— —(}’[72,')2/2 ’
where 4, =3/-¢/2+./0 ;
g=-2" (mz)6 (1 + 2(117:)4 (Mm/RL, )2 ) ;
0=(n)* 2" ((1 +2(nz) " (Mm/R.)’ )2 —1).
The minimum critical Rayleigh number is:

() = (4. + 4 +(nx)' [2) +(MmR.) .

3. USING A THEORETICAL MODEL
TO DESCRIBE CONVECTION
IN A CYLINDRICALLY SHAPED STEEL
MELT LAYER IN AN EXTERNAL
MAGNETIC FIELD OF A VACUUM ARC
CURRENT FLOWING THROUGH IT

Allowing for a magnetic field the critical Rayleigh
number increases with increasing the magnetic field
strength in the form of a term in (20) proportional to the
square of the Hartmann number M value. However, for
the steel melt at a temperature of 1300°C, it has character-

istic parameters: o ~(6...7.7)-10° s, p~7.5..8 glom’
[19, 20]; v ~(8.57..10)-107 cm¥s [20, 21]; h~2 cm;

hy=2I/cR, ~10°G. Whence the small value of the
Hartmann number M follows:

2 3
Mzﬂ o _10 120 ]_7 1072 ~2.10°°
c \pv 3100 \V7-10

As follows from (21), the small value M is due to
the low electrical conductivity of the molten steel.

Thus, it can be concluded that the critical Rayleigh
number for the case of molten steel does not depend on
the value of the magnetic field strength of the vacuum
arc discharge.

To calculate the critical Rayleigh number (20), it is
necessary to determine the value of the critical radial
wave number k£, . For calculating it is necessary to

21)

specify the radial v,(70) and azimuthal v, (70) veloci-

ties of the melt motion. These velocities can be deter-
mined from the fluid incompressibility equation (11)

using the expression for the vertical velocity v_(7.0).
As a result, assuming

v (F0)=A'k'J (x)cos(nzz)sin(me),
4 m < m
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and using [22] we obtain expressions for the radial ve-
locity of the melt:

v, (F0) = —(xk, )" Anzu(x)cos(nzz)cos(mp), (22)
where x=k,r, b=Ak, /Anﬂ , A,A'— constants,

u(x) =xJ,. (x)+b'2m2']m+2k+1 (x)+2mz']m+2k+2 (x)
k=0 k=0

It follows from the expression (22) that the radial ve-
locity is zero at the origin.

On condition that radial velocity is equal to zero at
the cell boundary (at x =k R,), we determine the criti-
cal wave number for disturbance with the lowest azi-
muthal m =1 and vertical n=1 modes. Its value is
found by a numerical method based on the condition
that all projections of the perturbed velocities at the cell
boundary are equal to zero. It follows, that at
b~-1.879 the critical wave number is of the order
k, ~3.83/R,, where necessary to remember that R, is

measured in units of the melt layer thickness 7 .
Thus, for  the experimental conditions
k ~3.83-2/9=0.75 and the critical Rayleigh number

is equal to R = 675.196, which corresponds to the criti-
cal Rayleigh number in the absence of a magnetic field
for the same perturbation modes: R (h, =0)=675.196.

It follows from given above assessments that the critical
Rayleigh number in the presence of a magnetic field of
a vacuum arc is easy attainable due to its equality to the
minimum, which corresponds to the Rayleigh number
without a magnetic field.

4. DESCRIPTION OF CONVECTIVE
MOTION OF STEEL MELTS AT VACUUM
ARC MELTING

4.1. THEORETICAL DESCRIPTION

Based on the theoretical results obtained above, we
will analyze the azimuthal velocity of the melt, since it
is an observed value in the experiment. In the laboratory
coordinate system the azimuthal velocity of the melt
motion at the upper boundary z=1 for the modes
m=n=1 will be characterized by an expression of the
form:

V,. (70)=Qr—A'J, (kr)sin(Qr), (23)
where the melt rotation is given by the dependence of
azimuthal angle on time: ¢ = Qr .

At a =A'/QR <<1 the irregularity of the dimen-
sionless azimuthal angular velocity ¢ is described by a
small harmonic deviation from the equilibrium velocity:

w(70)=V,,/QR, =r/R, +aJ, (kr)sin(x). (24)

Due to irregularity of the melt motion velocity, its
hydrostatic pressure will change periodically in the ver-
tical direction. This pressure deviation, according to the
Bernoulli's law, can be related to the deviation of the
upper boundary of the melt from z =1. Therefore, there
will be a section at the upper boundary of the melt that
rises above the equilibrium level, and through the azi-
muthal angle 7 — a section with a level below the equi-
librium level. The dependence of deviation of the melt
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upper boundary on time in dimensional variables can be
represented as:
A =g 'R (QR) rad, (kr)sin(Qr). (25)

Thus, the steel melt, where there is a section at the
upper boundary that rises above the equilibrium level,
will have a maximum area with a maximum brightness.
A section with a level below the equilibrium one will
have a smaller area of the same brightness. Moreover,
these regions of brightness will rotate with angular ve-
locity Q.

The mentioned fact can be used to determine the ve-
locity of the melt rotation in the magnetic field of a vac-
uum arc discharge.

4.2. EXPERIMENTAL OBSERVATION
AND THEORETICAL DESCRIPTION

The process of steel vacuum arc remelting was rec-
orded on a video through a window with darkened
quartz glass 8 located on the upper flange of the vacuum
chamber (see Fig. 1).

Snapshot of a steel melt with a melted electrode 1
oriented to the center of the melt 2 is presented in Fig. 2.
Arrow 3 in the figure shows the direction of the melt
rotation determined from the results of numerous obser-
vations of the remelting process through quartz glass
with the most acceptable darkening.

Fig. 2. Snapshot of the melt at vacuum arc remelting:
1 — electrode (cathode) to be melted; 2 — liquid metal;
3 —direction of melt rotation

Based on the observational data, the boundary of the
maximum brightness of the melt surface was a circle
with a radius harmonically varying in time (24), where
it is necessary to assume r =R_. The visible boundary

of the brightness distribution corresponds to the azi-
muthal mode number m =1 and is described by formula
(25). Therefore, to determine the velocity of the melt
rotation we will be guided by the dependence (25).

For this, the captured video sequence was divided
into frames with an interval of 1 s and converted into
black and white format. After digitizing the obtained
images, curves bounded the area with maximum bright-
ness were plotted. These curves were plotted so, that
their scales and positions on the plane coincided. The
resulting curves bounded the areas of maximum bright-
ness are presented in Fig. 3. It can be seen that all
curves intersect at points, which are marked in the fig-
ure by two almost diametrically spaced circles.

From Fig. 3 it follows that the melt makes a half
revolution in 3 s, since the intersection points of the
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curves are shifted by m. Then the melt makes a complete
revolution in 6 s.

Let us determine the velocity of melt rotation using
the expression (25).

Fig. 3. Curves bounding the area of the greatest
brightness in positions 0...5 that correspond
to the moments of time t =0;3;6;9;12;15 s

According to (25), the intersection of the curves in
the area marked by the circle should be observed when
sin(Qt, ) =0, where 7, =3k s (k=1;2;3;4...).

This condition is satisfied when Qf =Qk=In,
where [ =1;2;3;... At [ =k, we getthat the period of
the melt rotation is equal to: 7 =2s. This value of the
melt rotation period coincides with the visually meas-
ured one. For R, =0.09 m the period of the melt rota-

tion T =6 s gives the following value for the equilibri-
um azimuthal velocity of the melt rotation:
Vv, =RQ=927/6=9.42 cm/s. If we assume, that the

melt is put in motion by magnetohydrodynamic forces,
then the characteristic velocity of the melt will be of the

order of: v = H/«/47rp ~10.7 cm/s. It can be seen that

these two velocity values practically coincide.

Thus, a comparison of the experimentally and theo-
retically obtained values of azimuthal velocities con-
firms the validity of the proposed convective model for
describing the stability of the heated from below layer
of a viscous incompressible conductive cylindrically
shaped fluid in the magnetic field of the vacuum arc
current flowing through it.

CONCLUSIONS

Electro-vortex flows (EVF), which arise as a result
of interaction of magnetodynamic forces of a vacuum
arc direct current with a conductive melt, are used for
mixing liquid metal in DCAF. An installation for vacu-
um arc melting of steel is described in the paper. To
study the melting process in such an installation, the
molten metal is presented in the form of a horizontal
layer of a viscous incompressible liquid with a vertical
temperature gradient and a direct current distributed
over its volume. Onset of convective motion of the mol-
ten metal, modified by the action of a magnetic field
created by an electric current of a vacuum arc, was
shown. In contrast to the well-known works on taking
into account the effect of rectilinear magnetic fields on
the convection of conductive fluids, we investigated in
this work another model configuration of the magnetic
field — an axially symmetric magnetic field correspond-
ing to the magnetic field inside the conductor. The ini-
tial equations were written for such a heated from below
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layer of a viscous incompressible conductive cylindrical
fluid located in an external magnetic field of the vacu-
um arc current flowing through it. They consist of line-
arized equations for small velocity perturbations, small
deviations from the equilibrium values of temperature,
pressure and magnetic field strength. The considered
boundary value problem was solved for the case of free
boundaries. The condition for the existence of stationary
perturbations has been found, which is determined by
the dependence of the Rayleigh number on the Hart-
mann number, radial and vertical wave numbers. The
dependence of the equilibrium melt velocity on coordi-
nates was described. The critical Rayleigh number and
the corresponding radial wave number were determined.
The obtained solutions were used to describe the exper-
iment on vacuum arc melting of steel. Graphs of de-
pendence of the equilibrium azimuthal velocity of the
melt on a time are obtained for the experimentally ob-
served first radial and vertical modes. Comparison of
the experimental data with the theoretical calculations
of this work made it possible to determine the velocity
of steel melt rotation during vacuum arc melting, which
turned out to be of the order of 9.42 cm/s.

Thus, the proposed model for describing the stability
of the heated from below layer of the viscous incom-
pressible conductive cylindrically shaped fluid in the
external magnetic field of the vacuum arc current flow-
ing through it can be used to study various aspects of
such processes.
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YCTOMYUBOCTD BA3ZKOI'O HECXKUMAEMOT O J)KMUJIKOI'O CJ0SI HWJINHJIPUYECKOM
®OPMbI B HEOJHOPOJHOM TEMIIEPATYPHOM I10JIE
U MATHUTHOM IOJIE BAKYYMHOM OYT'H, MPOTEKAIOIIEN YEPE3 )KUJIKOCTh

O.JI. Anopeesa, b.B. bopu, A.®. Banyca, H.M. Kopomxoea, B.U. Tkauenko

TeOpeTI/I‘IeCKI/I HUCCICA0BAaH KOHBEKTHBHBIN MacConepeHoC BSI3KOM HEC)KMMAaeMOM HpOBOI[HIJ.[efI KHUIKOCTHU IH-
HHHI[pH‘IeCKOﬁ (l)OpMI)I B HCOAHOPOJHOM I10JIC TEMIIEPATYPHLI U BO BHCHIHEM MArnMTHOM IIOJI€ IMPOTCKAIOLICTO 110
HeHW Toka BaKyyMHOﬁ JAYyTH. 3anucaHbl HUCXOJHBIC YPaBHCHU JId TOPU3OHTAJIBHOI'O CJIOA BH3KOI>1, HeC)KHMaeMOﬁ,
HpOBOI[,HH.[efI KUIKOCTHU HHHHHI{pH‘IeCKOﬁ (l)OpMH, HaXO)lHH.[eﬁCH B HCOAHOPOJHOM I10 BBICOTC TEMIICPATYPHOM I10-
JIC 1 BO BHCIIHEM MAarHuMTHOM IIOJIC MPOTCKAIOUICTO 110 HEH Toka BaKyyMHOﬁ JAyTH. Gy YpaBHEHHUA COCTOAT U3 JIU-
HCapU30BaHHBIX ypaBHEHI/Iﬁ JUIA MaJIbIX B03MyH16HHﬁ CKOpPOCTH, MAJIBIX OTKJIOHEHHMI OT PaBHOBCCHBIX 3HAYECHHMI
TEMIICPATYPhI, JaBJICHUA U HAIIPSX)KCHHOCTH MAarHUTHOT'O ITOJIA. PaCCManI/IBaeMaH KpaeBasd 3aava peiicHa ajisd ClIy-
qas CBO6OI[HI)IX TpaHUIl. CpaBHeHI/Ie OKCIICPUMECHTAJIBHBIX JaHHBIX C TCOPECTUUCCKUMU pacuCTaMU IMMO3BOJIMIJIO OIIpe-
JCIINTb CKOPOCTh BpalllCHUs paciljiaBa CTaJIu IIpu BaKyyMHO-I[yFOBOﬁ IJIaBKE.

CTIMKICTb LHAPY B'SI3KOi HECTUCJIMBOI PIIMHU LIUJITHAPUYHOI ®OPMU
B HEOJHOPIJTHOMY TEMIIEPATYPHOMY IIO.JII
I MATHITHOMY IIOJII BAKYYMHOI AYI'H, 11O [TIPOTIKAE YEPE3 PIIUHY

O.JI. Anopecsa, b.B. bopu, O.®. Banyca, L M. Kopomkosa, B.1. Tkauenxo

TeoperndHo JOCIIHKEHU KOHBEKTUBHUI MacONEepPeHOC B'SI3KO1 HECTUCIMBOI MPOBIAHOI PiMHU Ui HAPUIHOL
(opMHU B HEOHOPITHOMY TIOJIi TEMIIEPATYpPH 1 B 30BHIIHEOMY MarHiTHOMY IOJIi CTpPyMY BaKyyMHOI AYTH, IIIO ITPO-
TiKae 1o Hil. 3anycaHi BUXiHI PiBHSIHHS JJIsi TOPHU30HTAIBHOIO IIApy B'SI3K0i, HECTUCIMBOI, TPOBIIHOI PiIUHU IH-
JHIPUYHOT (OPMH, IO 3HAXOAUTHCS B HEOAHOPIIHOMY IO BHCOTI TEMIIEpaTYpHOMY TOJIi 1 B MarHiTHOMY ITOJIi
CTPpYMY BaKyyMHOI Iyr'", IO MpOTikae 1o Hii. Ili piBHIHHS CKIaJalOThCS 3 JIIHEAPH30BAHUX PIBHSIHB JUTS MAaHX
30ypeHb MIBHUIKOCTI, MaJIHMX BiIXMJICHb BiJI PIBHOBXHUX 3HAUYEHb TEMIIEPATYPH, THCKY i HAIIPY)KEHOCTI MarHiTHOTO
nonst. Boke 3rajgana kpaiioBa 3a/1aua BUpilIeHa JJIsl BUIIAJIKY BUTBHUX MeX. [[OpiBHSIHHS eKCIIEpUMEHTAIBHUX JaHUX
3 TEOPETHYHHMH DPO3paxyHKaMH JIO3BOJIMIIO BH3HAYMTH LIBUIKICTb OOEpTaHHS PO3IUIABY CTajl MPH BaKyyMHO-
JIyTOBif TUTABIIL.
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