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Convective mass transfer in a cylindrical viscous incompressible conductive fluid layer in an inhomogeneous 

temperature field and in the external magnetic field of the vacuum arc current through it is theoretically investigated 
in this work. For a horizontal layer of a viscous, incompressible, conducting liquid of a cylindrical shape, located in 
a temperature field inhomogeneous in height and in an external magnetic field of a vacuum arc current flowing 
through it, the original equations are written. These equations consist of linearized equations for small velocity per-
turbations, small deviations from the equilibrium values of temperature, pressure, and magnetic field strength. The 
considered boundary value problem is solved for the case of free boundaries. Comparison of the experimental data 
with theoretical calculations made it possible to determine the rotation velocity of the steel melt during vacuum arc 
melting. 

PACS: 47.20.−k, 47.20.Bp, 65.20.−w, 65.20.Jk 
 

INTRODUCTION 
In some metallurgical plants liquid metal mixing is 

used to improve the quality of the final product and re-
duce the energy intensity of the production. High-
quality mixing of a liquid metal can be provided by gas 
stirring or by electromagnetic mixing methods [1]. One 
of the electromagnetic methods of mixing liquid metal 
is realized in direct current arc furnaces (DCAF), where 
electric vortex flows (EVF) are used [2]. 

In the process of smelting in DCAF the metal can be 
conventionally represented as a horizontal layer of a 
viscous incompressible fluid with a vertical temperature 
gradient and a direct current distributed over its volume. 

In turn, due to the temperature gradient the convec-
tive motion of a liquid viscous incompressible conduc-
tive metal with a current flowing through it is subject to 
the effect of magneto-hydro-dynamic forces, which can 
affect its convective motion and adjust the equilibrium 
conditions of its existence. The magnetic field trans-
forms the direction of the convective flow of the con-
ducting fluid into a transverse direction, and thus, in 
some cases, can have a certain effect on the convection 
process. This effect is due to the allowance for the mag-
netic field in the Rayleigh problem on the equilibrium 
of a horizontal fluid layer [3]. Taking into account the 
magnetic field leads to increasing the number of un-
known variables and characteristic parameters in the 
Rayleigh convection equations. Therefore, in the char-
acteristic equation of the convection problem, taking 
into account of magneto-hydro-dynamic forces can lead 
to the emergence of new solutions describing monoton-
ically unstable or vibrational states of a heated from 
below horizontal layer of a viscous incompressible flu-
id. 

For the first time, the existence of such solutions is 
indicated by the studies of W. Thompson for free 
boundaries [4] and S. Chandrasekhar for rigid and free 
boundaries [5, 6].  

The simplest case of isothermal layer boundaries, 
when a constant magnetic field and gravity act in the 
same direction, was investigated in [5]. The dependence 
of the Rayleigh number on the Hartmann number char-
acterized the magnetic field strength was determined 
analytically for the case of monotonically stable pertur-
bations. The critical values of the Rayleigh numbers and 
the corresponding critical wave numbers for this case 
were calculated. The critical values of the Rayleigh 
numbers and the corresponding critical wave numbers 
for rigid bounding surfaces or for one free bounding 
surface and the other  rigid were investigated numeri-
cally. It is shown that in all cases the critical Rayleigh 
numbers increase with increasing magnetic field 
strength and at high magnetic fields cease to depend on 
the type of boundaries. It is also shown that the critical 
Rayleigh numbers are determined only by the vertical 
component of the external magnetic field. 

In the case, when the applied magnetic field acts in 
the direction different from the direction of gravity, it is 
found that, when they are various-directional, the con-
vection, which occurs at ultimate stability, has the shape 
of shafts elongated in directions parallel to the plane 
containing the vectors of the magnetic field and gravity 
[6]. 

The theoretical conclusions [4 - 6], that an increase 
in the magnetic field strength increases the stability of 
the fluid convective motion and leads to reduction in 
horizontal dimensions of convective cells, are con-
firmed in a series of Y. Nakagawa`s experimental works 
[7, 8]. 

These papers describe experiments on magnetic 
suppression of thermal convection in horizontal layers 
of mercury heated from below. A large cyclotron mag-
net of diameter 36 ½ inch adapted for hydromagnetic 
research was used in these experiments. Using layers of 
mercury of a depth of 3 to 6 cm and magnetic fields of a 
strength of 500 to 8000 G it was possible to determine 
the dependence of the critical Rayleigh number for in-
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stability onset on the non-dimensional parameter Q1, 
where Q1 = σH2h2/π2ρνж H  field density; σ  electric 
conduction; ν  kinematic viscosity coefficient; ρ  den-
sity and h  layer depth. The parameter Q1 varied in the 
range from 40 to 1.6×106.  

The conclusion [5] that the horizontal magnetic field 
does not affect the stability of equilibrium has been ex-
perimentally confirmed in [9]. In this work it has been 
also shown that under the action of a horizontal magnet-
ic field the convection occurs in the form of rolls elon-
gated along the field. 

The conditions for vibrational-convective instability 
of a conducting medium in a magnetic field were de-
termined in [10]. It was concluded that vibrational in-
stability arises if the electrical conductivity σ and ther-
mal diffusivity χ of the medium satisfy the condition 
4πσχ/с² > 1, and if the magnetic field strength is greater 
than a certain critical value H > Hcr. 

The general theory of perturbation spectrum and 
convective stability of the mechanical equilibrium of a 
conductive fluid in a magnetic field was developed in 
[11 - 13], which were later described in details in [14]. 

In stated above works the convection was studied in 
a Cartesian coordinate system in rectilinear magnetic 
fields. The main conclusions are that the horizontal 
component of the external magnetic field strength does 
not affect the critical Rayleigh numbers, but orients the 
arising convective rolls in its direction. The vertical 
component of the external magnetic field strength leads 
to increasing the critical Rayleigh numbers by a magni-
tude proportional to its square. With increasing the 
magnetic field strength the stability of the fluid convec-
tive motion increases and the horizontal dimensions of 
the convective cells decrease. At high magnetic field 
strengths the critical Rayleigh numbers cease to depend 
on the type of boundaries. 

However, rectilinear magnetic fields and the conclu-
sions obtained while studying their effect on convection 
are applicable only in specially created experimental 
conditions, which reduces their practical value. 

The aim of this work is to study the stability of a 
viscous incompressible conductive cylindrically shaped 
fluid layer in an inhomogeneous temperature field and 
in an external azimuthally symmetric magnetic field 
created by a vacuum-arc discharge current flowing 
through the fluid. 

1. THE INITIAL EQUATIONS  
FOR A VISCOUS CONDUCTIVE 

INCOMPRESSIBLE FLUID LAYER  
IN AN INHOMOGENEOUS TEMPERATURE 
FIELD AND IN A CYLINDRICAL VOLUME 
LOCATED IN AN EXTERNAL MAGNETIC 

FIELD 
The initial equations describing convection of a vis-

cous conductive incompressible fluid layer in an inho-
mogeneous temperature field and in a cylindrical vol-
ume located in an external magnetic field will be written 
in general form. However, in the final notation, due to 
the symmetry of the problem, they will be presented in a 
cylindrical coordinate system. 

Let us describe the basic data of the problem being 
solved. 

Low-carbon steel melt (viscous conductive incom-
pressible fluid) is located in a cylindrical volume of a 
radius cR . The lower and upper boundaries of the liquid 
volume coincide with the planes 0z   and z h . The 
magnetic field in the fluid is created by a direct current 
flowing between the anode and cathode of the vacuum-
arc installation 0.8....1.2I   kA (Fig. 1 [15]) and is 
axially symmetric      0 0 0 cH r H r e h r R e     

    
[16], where e

  – azimuthal unit vector in a cylindrical 
coordinate system; r  – distance from the axis of a cy-
lindrical volume to a fluid element; 0h  – constant. The 
chosen dependence of the magnetic field on the radius 
inside the melt is model and reflects the fact that the 
melt can be considered as a cylindrical conductor with a 
current. 

The temperature distribution inside the cylinder 
 0T z , similar to [3], is assumed to be set in such a way 

that the temperature of the lower boundary is higher 
than the temperature of the upper: 0 2(0)T T , 0 1( )T h T  
( 2 1T T ). In this case, we assume that in a state of equi-
librium the temperature distribution is described by a 
linear function of the vertical coordinate z : 

  1
0 zT z h e  

  , where 2 1T T     temperature 
difference between the bottom and top planes; ze   unit 
vector directed perpendicular to the fluid layer vertically 
upwards.  

Let us write down the linearized equations for small 
velocity perturbations v  and small deviations from the 
equilibrium values of a temperature  0T z T  , pressure 

0p p  , and magnetic field strength  0H r H
  . These 

equations describe variation of perturbed magnitudes in 
space and time, and with no of viscous dissipation and 
Joule heating of the fluid, they can be represented in the 
form [14, 17]: 
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(3)

 div v 0,

 (4)

 div 0,H 
  (5)

where v  – small perturbations of the velocity of an el-
ementary volume of a fluid in coordinate system rotated 
with a frequency ze  

  ; r  – radius-vector of the 

fluid element;   – fluid density; 


 – gradient opera-
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tor;   – Laplace operator; g  – gravitational accelera-
tion directed against the axis z ;   – fluid temperature 
diffusivity coefficient;   – fluid kinematic viscosity 
coefficient;   – fluid volumetric thermal expansion 
coefficient; c  – light speed;   – fluid electrical con-
ductivity. 

 

 
Fig. 1. Scheme for obtaining of oxide dispersion  
strengthened steels using vacuum arc remelting: 
1 – corona; 2 – electrode (cathode) to be melted;  
3 – liquid metal; 4 – ingot; 5 – copper crystallizer  
(anode); 6 – cooler (water); 7 – cavities with alloy 

additive; 8 – quartz glass window; a – direction of elec-
tric current; b – circular motion of metal in horizontal 

plane; c – motion of metal in vertical plane 

For a liquid located in a solid massif with tempera-
ture diffusivity coefficient m  and electrical conduc-
tivity coefficient m , the equations (1) - (5) should be 
supplemented with equations describing variation of 
temperature mT  and magnetic field strength mH


 in the 

massif: 
2

, .
4

m m
m m m

m

T H cT H
t t




 
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 




 (6)

At the boundaries of the liquid and the massif the 
velocity vanishes, and the temperature and heat flux are 
continuous [14]: 
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 (7) 

where   and m   temperature diffusivity coefficients 
of the fluid and the massif respectively; n   normal to 

the boundary;  rot t A


 – tangential component of the 

operator  rot A


. 

In dimensionless variables the system of equations 
(1) - (5) takes the form:  
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   (10) 

   div v 0, div 0,H 
 

 (11) 

where 

 2 2, , , , , 4h h h h hc      
are chosen as the units of measurement of distance, 
time, velocity, temperature, pressure and magnetic field 
strength. The equations (8) - (10) contain dimensionless 
variables:  3R g h     the Rayleigh number, 

P    and 24MP c    the Prandtl number and 
the magnetic Prandtl number, respectively, 

 0M h h c    the Hartmann number.  

The amplitudes of dimensionless perturbations in 
fluid-bounding massifs are described by the equations: 

ˆ ˆ, ,m m
m M m
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t t
 

 
   

 

    (12)

where, ˆ m   , ˆ m   . 
In this case, the boundary conditions take the form: 

   

0, 0, 0,
1 1 1 0, 0,

1 1

0, 0, 0, 0,
1 1 1 1

v 0, , ,

ˆ, rot rot .

m
z z zm m
z z z z z

z z

m t t mz z z z
z z z z

TTT T
n n

H H H H

 



  
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 

  

      
 (13) 

The amplitudes of temperature and magnetic field 
strength perturbations determined from equations (12) 
should tend to zero at large distances from the fluid 
boundaries. 

2. DEFINITION AND SOLUTION  
OF THE BOUNDARY VALUE PROBLEM  

ON STABILITY OF CONVECTIVE MOTION 
IN A LAYER OF A VISCOUS 

INCOMPRESSIBLE CONDUCTIVE FLUID 
OF A CYLINDRICAL SHAPE  

IN AN EXTERNAL MAGNETIC FIELD  
OF THE VACUUM ARC CURRENT 

FLOWING THROUGH IT 
We assume that all perturbed variables of the system 

of equations (9) - (15) depend on time and azimuthal 
coordinate in the form: 
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     
     
     

v v , exp ,

, exp ,

, exp ,

z

z

r,t r z t im

T r,t r z t im

H r,t r z t im

 
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   

   

   







 (14) 

where      v , , , , ,r z r z r z    amplitudes of per-
turbed velocity, temperature and magnetic field 
strength; 0;1;2;...m    azimuthal mode, which deter-
mines the dependence of solutions on the azimuthal 
angle  .  

This assumption allows obtaining from equations  
(8) - (12) with boundary conditions (13) the boundary 
value problem for determining the eigenvalues  . 

Proceeding similarly to [14], we substitute solutions 
of the form (14) into equations (8) - (12). Then we apply 
the operation   rot rot ...  to equation (8), and take the 
projection of the resulting equation onto the axis z. As a 
result, we obtain an equation relating amplitudes of dis-
turbances: 

 v v+ .cR iM m R          (15) 
As a result of the indicated substitution of solutions 

(14) into equations (10), it takes the form: 
vP      , (16) 

and from the equation (10) we use only its projection 
onto the axis z : 

vM cP i M m R      . (17)
The Laplace operator in the cylindrical coordinate 

system is used in equations (15) - (17): 
2 2 2

2 2 2
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               
. 

Solutions of the system of equations (18) - (20) can 
be represented in the form: 

     
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





 (18)

where 1, 2,3...n    the integers determined the vertical 
mode of perturbation,  mJ x   the Bessel function of 
the first kind of m-th order and the constants , ,A B C sat-
isfy the system of equations: 

 

 
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2 2 2 2
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m m m m
c
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c
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





   

  

  

 (19)

where  22 2
m mK k n  . 

For ideally heat-conducting boundaries and under 
the condition of infinite electrical conductivity the 
boundary conditions (13) are satisfied automatically. 

In the case of stable solutions we assume 0  . 
Then from (19) follows the critical Rayleigh number: 

      3 22 2 2 .m m c mR k K Mm R K   (20)

Let us consider some corollaries followed from the 
expression (20). 

With no magnetic field (the Hartmann number is ze-
ro 0M  ) or for axially symmetric perturbations 

0m  , it follows from (20) that the critical Rayleigh 
number corresponds to the critical Rayleigh number of a 
cylindrical convective cell with free boundary condi-
tions with the wave number 1

0 1,i ck R  , where  

1,i  – i-th zero of the Bessel function of the first kind of 
the first order [18]. 

In the general case, as follows from (20), the expres-
sion for the critical Rayleigh numbers of a layer with 
free boundary conditions does not contain numbers P  
and MP , but depends on the Hartmann number and the 
radial and vertical wave numbers. 

The critical Rayleigh number has a minimum at 

   2

min 2mk A A n    , 

where 3 2A q Q    ; 

      6 4 222 1 2 cq n n Mm R     ; 

      212 4 262 1 2 1cQ n n Mm R       
 

.  

The minimum critical Rayleigh number is: 

      
22 2

min 2 cR A A n Mm R     . 

3. USING A THEORETICAL MODEL  
TO DESCRIBE CONVECTION  

IN A CYLINDRICALLY SHAPED STEEL 
MELT LAYER IN AN EXTERNAL 

MAGNETIC FIELD OF A VACUUM ARC 
CURRENT FLOWING THROUGH IT 

Allowing for a magnetic field the critical Rayleigh 
number increases with increasing the magnetic field 
strength in the form of a term in (20) proportional to the 
square of the Hartmann number M  value. However, for 
the steel melt at a temperature of 1300ºС, it has character-
istic parameters:   36...7.7 10    s-1, 7.5...8   g/cm3 

[19, 20];   38.57...10 10    cm2/s [20, 21]; 2h   cm; 
2

0 2 10ch I cR  G. Whence the small value of the 
Hartmann number M  follows: 

2 3
60

10 2

10 2 7 10 2 10 .
3 10 7 10

h h
M

c






 
   

 
 (21)

As follows from (21), the small value M  is due to 
the low electrical conductivity of the molten steel. 

Thus, it can be concluded that the critical Rayleigh 
number for the case of molten steel does not depend on 
the value of the magnetic field strength of the vacuum 
arc discharge. 

To calculate the critical Rayleigh number (20), it is 
necessary to determine the value of the critical radial 
wave number mk . For calculating it is necessary to 
specify the radial  v 0r r,  and azimuthal  v 0r,

  veloci-
ties of the melt motion. These velocities can be deter-
mined from the fluid incompressibility equation (11) 
using the expression for the vertical velocity  v 0z r, . 
As a result, assuming 

       1v 0 cos sin ,m mA k J x z, n mr  
  
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and using [22] we obtain expressions for the radial ve-
locity of the melt: 

         1v 0 cos cosr mr, xk An u x n z m   
 , (22) 

where mx k r , mb A k An , ,A A constants, 

       1 2 1 2 2
0 0

2 2 .m m k m k
k k

u x xJ x b m J x m J x
 

    
 

    
 

It follows from the expression (22) that the radial ve-
locity is zero at the origin. 

On condition that radial velocity is equal to zero at 
the cell boundary (at 1 cx k R ), we determine the criti-
cal wave number for disturbance with the lowest azi-
muthal 1m   and vertical 1n   modes. Its value is 
found by a numerical method based on the condition 
that all projections of the perturbed velocities at the cell 
boundary are equal to zero. It follows, that at 

1.879b    the critical wave number is of the order 
1 3.83 ck R , where necessary to remember that cR  is 

measured in units of the melt layer thickness h . 
Thus, for the experimental conditions 

1 3.83 2 9 0.75k     and the critical Rayleigh number 
is equal to 675.196R  , which corresponds to the criti-
cal Rayleigh number in the absence of a magnetic field 
for the same perturbation modes:  0 675.1960R h   .  
It follows from given above assessments that the critical 
Rayleigh number in the presence of a magnetic field of 
a vacuum arc is easy attainable due to its equality to the 
minimum, which corresponds to the Rayleigh number 
without a magnetic field. 

4. DESCRIPTION OF CONVECTIVE 
MOTION OF STEEL MELTS AT VACUUM 

ARC MELTING  
4.1. THEORETICAL DESCRIPTION 

Based on the theoretical results obtained above, we 
will analyze the azimuthal velocity of the melt, since it 
is an observed value in the experiment. In the laboratory 
coordinate system the azimuthal velocity of the melt 
motion at the upper boundary 1z   for the modes 

1m n   will be characterized by an expression of the 
form: 

     1 1,1 sinV ,0 Ar, r J k r t   
  (23) 

where the melt rotation is given by the dependence of 
azimuthal angle on time: t   . 

At 1cRA    the irregularity of the dimen-
sionless azimuthal angular velocity   is described by a 
small harmonic deviation from the equilibrium velocity: 

     ,1 1 1 sin .0 V c cw r, R r R J k r t    
  (24) 

Due to irregularity of the melt motion velocity, its 
hydrostatic pressure will change periodically in the ver-
tical direction. This pressure deviation, according to the 
Bernoulli's law, can be related to the deviation of the 
upper boundary of the melt from 1z  . Therefore, there 
will be a section at the upper boundary of the melt that 
rises above the equilibrium level, and through the azi-
muthal angle    a section with a level below the equi-
librium level. The dependence of deviation of the melt 

upper boundary on time in dimensional variables can be 
represented as: 

     2
1 1

1 1 sin .c ch g R R r J k r t      (25) 
Thus, the steel melt, where there is a section at the 

upper boundary that rises above the equilibrium level, 
will have a maximum area with a maximum brightness. 
A section with a level below the equilibrium one will 
have a smaller area of the same brightness. Moreover, 
these regions of brightness will rotate with angular ve-
locity  . 

The mentioned fact can be used to determine the ve-
locity of the melt rotation in the magnetic field of a vac-
uum arc discharge. 

4.2. EXPERIMENTAL OBSERVATION  
AND THEORETICAL DESCRIPTION 

The process of steel vacuum arc remelting was rec-
orded on a video through a window with darkened 
quartz glass 8 located on the upper flange of the vacuum 
chamber (see Fig. 1). 

Snapshot of a steel melt with a melted electrode 1 
oriented to the center of the melt 2 is presented in Fig. 2. 
Arrow 3 in the figure shows the direction of the melt 
rotation determined from the results of numerous obser-
vations of the remelting process through quartz glass 
with the most acceptable darkening. 

 
Fig. 2. Snapshot of the melt at vacuum arc remelting:  
1 – electrode (cathode) to be melted; 2 – liquid metal; 

3 – direction of melt rotation 
Based on the observational data, the boundary of the 

maximum brightness of the melt surface was a circle 
with a radius harmonically varying in time (24), where 
it is necessary to assume cr R . The visible boundary 
of the brightness distribution corresponds to the azi-
muthal mode number 1m   and is described by formula 
(25). Therefore, to determine the velocity of the melt 
rotation we will be guided by the dependence (25).  

For this, the captured video sequence was divided 
into frames with an interval of 1 s and converted into 
black and white format. After digitizing the obtained 
images, curves bounded the area with maximum bright-
ness were plotted. These curves were plotted so, that 
their scales and positions on the plane coincided. The 
resulting curves bounded the areas of maximum bright-
ness are presented in Fig. 3. It can be seen that all 
curves intersect at points, which are marked in the fig-
ure by two almost diametrically spaced circles.  

From Fig. 3 it follows that the melt makes a half 
revolution in 3 s, since the intersection points of the 
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curves are shifted by π. Then the melt makes a complete 
revolution in 6 s. 

Let us determine the velocity of melt rotation using 
the expression (25). 

 
Fig. 3. Curves bounding the area of the greatest  

brightness in positions 0…5 that correspond 
to the moments of time 0;3;6;9;12;15t   s 

According to (25), the intersection of the curves in 
the area marked by the circle should be observed when 

 sin 0kt  , where 3kt k  s ( 1;2;3;4...k  ). 
This condition is satisfied when kt k l    , 

where 1; 2; 3;..l  . At l k , we getthat the period of 
the melt rotation is equal to: 2T  s. This value of the 
melt rotation period coincides with the visually meas-
ured one. For 0.09cR  m the period of the melt rota-
tion 6T   s gives the following value for the equilibri-
um azimuthal velocity of the melt rotation: 

,1v 9 2 6 9.42cR     cm/s. If we assume, that the 
melt is put in motion by magnetohydrodynamic forces, 
then the characteristic velocity of the melt will be of the 
order of: ,1v 4 10.7H   cm/s. It can be seen that 
these two velocity values practically coincide. 

Thus, a comparison of the experimentally and theo-
retically obtained values of azimuthal velocities con-
firms the validity of the proposed convective model for 
describing the stability of the heated from below layer 
of a viscous incompressible conductive cylindrically 
shaped fluid in the magnetic field of the vacuum arc 
current flowing through it. 

CONCLUSIONS 
Electro-vortex flows (EVF), which arise as a result 

of interaction of magnetodynamic forces of a vacuum 
arc direct current with a conductive melt, are used for 
mixing liquid metal in DCAF. An installation for vacu-
um arc melting of steel is described in the paper. To 
study the melting process in such an installation, the 
molten metal is presented in the form of a horizontal 
layer of a viscous incompressible liquid with a vertical 
temperature gradient and a direct current distributed 
over its volume. Onset of convective motion of the mol-
ten metal, modified by the action of a magnetic field 
created by an electric current of a vacuum arc, was 
shown. In contrast to the well-known works on taking 
into account the effect of rectilinear magnetic fields on 
the convection of conductive fluids, we investigated in 
this work another model configuration of the magnetic 
field  an axially symmetric magnetic field correspond-
ing to the magnetic field inside the conductor. The ini-
tial equations were written for such a heated from below 

layer of a viscous incompressible conductive cylindrical 
fluid located in an external magnetic field of the vacu-
um arc current flowing through it. They consist of line-
arized equations for small velocity perturbations, small 
deviations from the equilibrium values of temperature, 
pressure and magnetic field strength. The considered 
boundary value problem was solved for the case of free 
boundaries. The condition for the existence of stationary 
perturbations has been found, which is determined by 
the dependence of the Rayleigh number on the Hart-
mann number, radial and vertical wave numbers. The 
dependence of the equilibrium melt velocity on coordi-
nates was described. The critical Rayleigh number and 
the corresponding radial wave number were determined. 
The obtained solutions were used to describe the exper-
iment on vacuum arc melting of steel. Graphs of de-
pendence of the equilibrium azimuthal velocity of the 
melt on a time are obtained for the experimentally ob-
served first radial and vertical modes. Comparison of 
the experimental data with the theoretical calculations 
of this work made it possible to determine the velocity 
of steel melt rotation during vacuum arc melting, which 
turned out to be of the order of 9.42 cm/s. 

Thus, the proposed model for describing the stability 
of the heated from below layer of the viscous incom-
pressible conductive cylindrically shaped fluid in the 
external magnetic field of the vacuum arc current flow-
ing through it can be used to study various aspects of 
such processes.  
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УСТОЙЧИВОСТЬ ВЯЗКОГО НЕСЖИМАЕМОГО ЖИДКОГО СЛОЯ ЦИЛИНДРИЧЕСКОЙ 
ФОРМЫ В НЕОДНОРОДНОМ ТЕМПЕРАТУРНОМ ПОЛЕ  

И МАГНИТНОМ ПОЛЕ ВАКУУМНОЙ ДУГИ, ПРОТЕКАЮЩЕЙ ЧЕРЕЗ ЖИДКОСТЬ 
О.Л. Андреева, Б.В. Борц, А.Ф. Ванжа, И.М. Короткова, В.И. Ткаченко 

Теоретически исследован конвективный массоперенос вязкой несжимаемой проводящей жидкости ци-
линдрической формы в неоднородном поле температуры и во внешнем магнитном поле протекающего по 
ней тока вакуумной дуги. Записаны исходные уравнения для горизонтального слоя вязкой, несжимаемой, 
проводящей жидкости цилиндрической формы, находящейся в неоднородном по высоте температурном по-
ле и во внешнем магнитном поле протекающего по ней тока вакуумной дуги. Эти уравнения состоят из ли-
неаризованных уравнений для малых возмущений скорости, малых отклонений от равновесных значений 
температуры, давления и напряженности магнитного поля. Рассматриваемая краевая задача решена для слу-
чая свободных границ. Сравнение экспериментальных данных с теоретическими расчетами позволило опре-
делить скорость вращения расплава стали при вакуумно-дуговой плавке. 

СТІЙКІСТЬ ШАРУ В'ЯЗКОЇ НЕСТИСЛИВОЇ РІДИНИ ЦИЛІНДРИЧНОЇ ФОРМИ  
В НЕОДНОРІДНОМУ ТЕМПЕРАТУРНОМУ ПОЛІ  

І МАГНІТНОМУ ПОЛІ ВАКУУМНОЇ ДУГИ, ЩО ПРОТІКАЄ ЧЕРЕЗ РІДИНУ 
О.Л. Андрєєва, Б.В. Борц, О.Ф. Ванжа, І.М. Короткова, В.І. Ткаченко 

Теоретично досліджений конвективний масоперенос в'язкої нестисливої провідної рідини циліндричної 
форми в неоднорідному полі температури і в зовнішньому магнітному полі струму вакуумної дуги, що про-
тікає по ній. Записані вихідні рівняння для горизонтального шару в'язкої, нестисливої, провідної рідини ци-
ліндричної форми, що знаходиться в неоднорідному по висоті температурному полі і в магнітному полі 
струму вакуумної дуги, що протікає по ній. Ці рівняння складаються з лінеаризованих рівнянь для малих 
збурень швидкості, малих відхилень від рівноважних значень температури, тиску і напруженості магнітного 
поля. Вже згадана крайова задача вирішена для випадку вільних меж. Порівняння експериментальних даних 
з теоретичними розрахунками дозволило визначити швидкість обертання розплаву сталі при вакуумно-
дуговій плавці. 


