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     Coefficients of neoclassical transport in tokamaks and stellarators with non-axisymmetric equipotential surfaces 

mis-aligned with magnetic flux surfaces are derived for the     regime. In the general case, they are given by 

integral expressions including field line integrals similar to those defining the effective helical ripple [V.V. Nemov 

et al. // Phys. Plasmas. 1999, v. 6, p. 4622]. For small mis-alignments in a tokamak with a simplified geometry, they 

are reduced to simple analytical expressions. 
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INTRODUCTION 

 
In the standard neoclassical theory, the equilibrium 

electrostatic potential is assumed to be constant within 

magnetic flux surfaces, i.e. its equipotential surfaces are 

aligned with magnetic surfaces. An exception is for 

strong plasma rotation in tokamaks where the 

centrifugal force induces an axisymmetric miss-

alignment – a dependence of the potential on the 

poloidal angle [1]. In stellarators, a small non-

axisymmetric potential miss-alignment always exists 

due to finite ion orbit widths, which may affect 

neoclassical transport of high-Z impurities (see, e.g. [2, 

3]) but produces only a correction for the transport of 

bulk plasma components. In tokamaks with external 

resonant magnetic perturbations (RMPs), non-

axisymmetric miss-alignment of equipotential surfaces 

and magnetic surfaces causes in resonant layers around 

rational magnetic surfaces a significant radial transport 

of electrons which may exceed the anomalous transport 

[4]. In Ref. [4], this transport has been obtained in a 

quasilinear limit for the straight cylinder tokamak model 

ignoring the toroid city and, thus, also ignoring the 

effects associated with particle trapping.  

In the present work, we derive neoclassical transport 

coefficients for general toroidal magnetic and 

electrostatic field geometry staying, however, limited to 

a specific transport regime ‒ the     regime ‒ valid for 

low plasma collisionality and low banana precession 

frequency, which should not exceed the collisional 

detrapping frequency. Normally, this is fulfilled for the 

electron component being the main driver for particle 

transport in tokamaks because the ion particle flux 

adjusts itself to the electron flux by viscous momentum 

transport so that the overall flux is ambipolar. 

Combined with the studies of mechanisms leading to the 

mis-alignment of equipotential surfaces, the result will 

be used for investigations of the increased particle 

transport caused by RMPs known as "density pump-

out".  

The derivation here is based on the results of 

Ref. [5], where the effective helical ripple modulation 

has been derived. Those results are generalized here for 

the case where equipotential surfaces are not necessarily 

aligned with magnetic surfaces. This causes some re-

definitions but generally leaves the main steps of 

Ref. [5] intact. 

 

1. BASIC EQUATIONS 

 
We start with the stationary drift-kinetic equation 

 

       ̂                                   (1) 

in guiding center variables   (        ), where   is 

the guiding center position,        
  (    ) is the 

perpendicular adiabatic invariant containing the species-

specific mass   , the perpendicular particle velocity    

and the species-specific cyclotron frequency    . 

Further,  is the gyrophase and      
        is 

the total energy containing the electric charge   . Here, 

 ̂  is the linearized Coulomb collision operator, and the 

guiding center velocity is given by 
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where the curl is computed assuming that 
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i.e. to be a function of the coordinates   and constant 

invariants of motion    and  . The Jacobian of the 

phase space coordinates  is 
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Further, the flux surface averaged normal particle flux 

density is defined as 
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where   is the distribution function and   is the flux 

surface area. For any distribution function, which, 

within the flux surface, depends only on integrals of 

motion but not on the coordinates (in particular, for a 

local Boltzmann distribution function), it can be shown 

that there is no flux surface averaged radial particle or 

total energy flux. This can be checked directly for the 

surface  ( )     as follows 
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where the surface integral of the curl is zero for both, 

passing particles, which occupy the whole flux surface 

area, and for trapped particles existing in the regions 

  
   . In these regions, the integral is reduced via the 

Stokes theorem to the region boundaries where the sub-

integrand is zero due to     . Similarly, one can 

check that the total energy flux, which contains an extra 

factor   in the sub-integrand, is also zero. 

Particle flux density (6) can be written via the 

species-specific fluid velocity    as 
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where the neoclassical flux surface average is defined in 

flux variables   (     ) as 
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Using Newcomb’s theorem, this expression can also be 

written in terms of field line integrals in field aligned 

variables    (       ) as 
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where these variables are defined via the safety factor   

as 

                                                (11) 

 

such that    labels the field lines. These variables have 

the same √ ,    and    as the usual ones, while 

     . Since      , the product √    is constant 

on flux surfaces so that √  can be replaced by      in 

      (9), thus arriving at                 (10). 
 

2. LMFP PARTICLE FLUX DENSITY 
 

Within the local neoclassical ansatz, the drift 

kinetic equation is solved by a series expansion over the 

radial drift velocity up to linear order using the 

ansatz       .The equilibrium distribution 

function is given by a local Boltzmann distribution 
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where the parameter  ̅is chosen so that the 

neoclassically averaged density ̅ is the same as the 

density computed from (12). By the above arguments, 

the fluxes are solely produced by the perturbation 

     (            ). In the long mean free path 

(LMFP) regime, which is of interest here, the fluxes are 

produced by the leading order of    in the collision 

frequency (its bounce averaged part) which is constant 

along the field lines,      (         ). Obviously, 

in the passing particle domain, the leading order    is 

independent of    as well and contributes to the fluxes 

only in the trapped particle domain. Expressing the 

particle flux density (7) via field line integrals (10), 

where the field aligned coordinates    are constructed 

from Boozer coordinates with a re-defined flux surface 

label such that ⟨|  |⟩   , and performing similar 

transformations to those in Ref.[5] this contribution is in 

the general form 
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where                   
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Here, the integration is along the field line          
        , and the index   enumerates the segments 

of this line where   
   , with   

  being the segment 

ends or turning points. Equation (13) does not assume 

that magnetic field and electrostatic potential 

modulations within the flux surface are small. It allows 

various classes of trapped particles including particles 

blocked by non-axisymmetric perturbations of both, the 

magnetic field and the electrostatic potential, which is 

most easily achieved even for small perturbations in a 

tokamak with perturbed toroidal symmetry near the 

extrema of the main axisymmetric magnetic field. If we 

ignore in those tokamaks the contributions of blocked 

particles and consider only the bounce averaged radial 

drift of usual bananas dominant at small perturbation 

amplitudes, eq.     (13) simplifies to 
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where     denotes the main class of banana-trapped 

particles and    corresponds to the unperturbed 

magnetic field. The heat flux density is obtained 

similarly by adding the average kinetic energy      ̅ 

in the sub-integrand. Note that the above expressions 

are valid for the general case of the LMFP regime, not 

necessarily the     regime. 

 

3. SOLUTION OF THE BOUNCE 

AVERAGED EQUATION  
 

In the     regime, the perturbation    satisfies the 

linear bounce averaged equation. Using the Lorentz 

model for the collision integral, 
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where    is the deflection frequency, this equation is 
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It corresponds to a particular class of trapped particles 

with a number of classes tending to infinity with a field 

line length   . Neighbouring classes bounded by the 

same boundary layer         , where simultaneously 

  
   , and which have a minimum along the field line 

(for the aligned equipotential surfaces this corresponds 

to local maxima of B) are coupled together via boundary 

conditions (detailed discussion can be found in Ref. 

[5]). As shown in [5], all those boundary conditions are 

satisfied by the following first integral of the kinetic 

equation over   , 
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Here, the derivative of the local Boltzmann distribution  
(12) is given as 
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where the thermodynamic forces are 
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Thus, particle flux    (13) for the general case takes the 

form 
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This expression generalises the formula for the     
particle flux density of Ref. [5] for the case of non-

aligned equipotential surfaces and reduces to that 

formula in case of alignment. In the latter case, the 

dependence of the quantities    and    on the kinetic 

energy can be factorized, which allows to factorize the 

integral over energy. Thus, all geometrical information 

is contained in the integral over the normalized 

perpendicular invariant     
  which can be expressed 

in terms of the factor     
   

 which formally defines 

effective helical ripple modulation     . 
Below, we are interested in the case of weak 

potential perturbations in a tokamak, where one can 

ignore additional trapped particle classes and where the 

energy integral can be factorized as well. Expression 

(15) for this case gives 
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4. SMALL ELECTROSTATIC 

PERTURBATIONS AND AXISYMMETRIC 

MAGNETIC FIELD 

 
In the case of small electrostatic perturbations and 

an axisymmetric magnetic field, we can simplify 
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where   is the particle velocity module and  
      (  

    )    
  (   ). Presenting the potential 

in the form 

 

  (     )    ∑   (   ) 
    

                 (24) 

 

and computing the integral over   , equation         (21) 

takes the form 
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where     
     (   ). Note that the normalized heat 

flux      is given by expression                (25) with an 

extra factor   in the sub-integrand.  

Thus, we obtain a matrix of Onsager-symmetric 

transport coefficients     determined via 

thermodynamic forces as 
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    ̅ (           )  
    ̅   (           )            (26) 

 

If we approximate the collision as        
    , 

where     is the collision frequency for particles with 

energy   , then transport coefficients are related by 
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The simplest expression for     is obtained for near-

resonant potential perturbations,     ( )    (   
  ) with |    |   , in a large aspect ratio circular 

tokamak with √      , and     (       ( ))  

where    and    are values at the magnetic axis and 

       . In this case, we arrive at 
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CONCLUSIONS 

 
We have derived an integral formula for non-

axisymmetric neoclassical transport  fluxes  in  the     
regime in general toroidal devices with non-aligned 

equipotential and magnetic surfaces. The formula 

considers all possible trapped particle classes allowing 

for both, magnetic and electrostatic trapping. In the case 

of aligned surfaces, it reduces to the result of Ref. [5] 

defining the effective helical ripple. The formula can be 

evaluated using the field line integration technique 

similar to the one realized in the code NEO [5]. 
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АКСІАЛЬНО-НЕСИМЕТРИЧНИЙ НЕОКЛАСИЧНИЙ ПЕРЕНОС ВНАСЛІДОК  

НЕСПІВПАДАННЯ ЕКВІПОТЕНЦІАЛЬНИХ ТА МАГНІТНИХ ПОВЕРХОНЬ 

 

М. Маркль, М.Ф. Хайн, С.В. Касілов, В. Кернбіхлер, К.Г. Альберт 

 

Виведено коефіцієнти неокласичного переносу в токамаках та стелараторах з неспівпадаючими 

еквіпотенціальними та магнітними поверхнями для режиму     . У загальному випадку вони даються 

інтегральним виразом з інтегралами вздовж силових ліній, які подібні до тих, що визначають ефективну 

гвинтову модуляцію в роботі [V.V. Nemov et al. // Physics of Plasmas. 1999, v. 6, p. 4622]. Для малих 

неспівпадінь у токамаку зі спрощеною геометрією вони зводяться до простих аналітичних виразів. 


