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The surface modification of advanced materials was studied through a series of repetitive plasma pulses caused
tungsten melting. Features of the affected surface layers in reference materials (IGP W, AM W/WTa, Hastelloy, and
EUROFER) for both fusion and fission applications were explored after exposure to plasma in the facilities (QSPA,
MPC, and PPA) with different durations of plasma pulses. A detailed surface analysis was carried out with Scanning
Electron Microscopy. It was found that the plasma treatment led to the formation of a modified layer as a result of
the rapid re-solidification of the exposed surface. The fine cellular structures appeared in the re-solidified layers of
the irradiated materials, with typical cell sizes ranging from 150 to 500 nm. An increase in the roughness of the
exposed surfaces was attributed to the presence of the cracks and re-solidified layer.
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INTRODUCTION

Advanced high-performance materials used in
nuclear power reactors, both for fission and fusion
applications, must endure severe conditions such as high
heat loads, particle bombardments, high-energy neutron
irradiation, etc. [1, 2]. A comprehensive understanding
of the mechanisms behind materials damage effects and
dedicated efforts toward mitigation will yield substantial
benefits that apply across various nuclear environments.

Tungsten is a primary material that will be used as a
first-wall and a divertor armour in fusion devices like
ITER and DEMO due to its high melting point, high
thermal conductivity, low sputtering yield, and tritium
retention [3, 4]. The development of advanced tungsten
products made using various production/densification
technologies, i.e.,, forging and rolling, additive
manufacturing (AM), W-based alloys, W-composites,
and W-fibres requires thorough testing and
characterization under harsh fusion-relevant conditions
(including H isotopes, He, etc) [1, 3, 5-7].

Hastelloy and other nickel alloys are designed for
effective performance under high-temperature, high-
stress conditions, particularly in situations where
conventional and less ex
pensive iron-based alloys (steels) would not be suitable.
Hastelloy is commonly used as construction material for
pressure vessels in power reactors and valves in the
chemical industry, among other applications [8].

Reduced Activation Ferritic Martensitic (RAFM)
steels, such as EUROFER, are relevant structural
materials used in fission and future fusion power plants
[9-11]. This choice is due to their high resistance to
swelling and low rates of irradiation-induced creep,
which refers to the slow changes in dimensions of
materials exposed to prolonged stresses caused by X-
rays, y-rays, and n-irradiation, etc).

Pulsed plasma facilities encompass a range of
scenarios involving high heat and particle loads onto the

surfaces. These facilities are used to make surface
modifications [11, 12] for various technologies, study
erosion mechanisms of different materials, and uncover
the risks associated with plasma contamination by
erosion products.

Previous research has revealed the key mechanisms
governing tungsten erosion under transient loads. These
include the formation of a melt layer, the development
of instabilities within this layer, and the emergence of
progressive corrugations, all of which contribute
significantly to material damage [13-18]. Additionally,
the cracking thresholds were evaluated for various
tungsten materials, considering the number of pulses
and the initial temperature of the samples under
investigation. Furthermore, the presence of micropores
and blisters on the exposed surfaces was also observed
[19].

Special mention should be made of the process of
high-cycle re-solidification in metals under conditions
of rapid surface heating and melting. This process
induces surface modifications that result in increased
microhardness and durability [12]. In experiments [14—
18], the cellular structures were observed on the
exposed surfaces. It was shown that the cellular
structures can have a significant influence on the
mechanical and thermal properties of the solidified
metal [20-24]. The size and distribution of cells can
impact the material strength, ductility, and thermal
conductivity. The features and their effects on material
stability and resilience under extreme plasma heat loads
require further investigations.

This work is devoted to the characterization of
surface modifications originated during a solidification
process in materials under various plasma stream
conditions, i.e., different pulse duration, plasma species,
and applied heat loads.
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1. EXPERIMENTAL FACILITIES, SAMPLES
AND DIAGNOSTICS

Samples of pure IGP tungsten with the transversal (T)
grain orientation and in the recrystallized (R) state were
used for the experiments (Figs.1 and 2) [4, 18, 25].
Samples had sizes of 12x12x5 mm. All specimens were
polished to achieve a mirror-like surface. The samples
were supplied by Plansee AG, prepared and delivered
from Forschungszentrum Julich.
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Fig. 1. SEM images at various magnifications of IGP
tungsten recrystalized sample: a — in as-received state;
b — exposed to the hydrogen QSPA plasma,

Thase = 400 °C. Scale bar — 1 um

Two types of samples, which were produced using
AM based on the laser powder bed fusion (LPBF)
method, were also tested (Figs.3 and 4) [3, 5].
Advanced materials were fabricated at Fraunhofer
Augsburg (under the direction of IPP Garching) [3] and
Renishaw PLC (under the direction of CCFE) [5]. The
size of powder particles was 10..50 um. These
materials took the form of nominal 1 cm cubes of lattice
material in both pure W and W-6% Ta, with a range of
lattice parameters designed by Uni Tuscia.

A sample of Hastelloy N (Fig. 5), a Ni-based
superalloy, was subjected to plasma irradiation, along
with other alloying elements such as Mo, Cr, Fe, Si, and
Mn in varying percentages.

Samples of EUROFER steel (Cr-9.7%, Mn-0.7%,
W-0.8%, Fe-89.6%) [9, 10] were also utilized in the
reported experiments (Fig. 6). The samples had
dimensions of 15x12x1 mm, and all specimens were
mechanically polished to achieve a mirror-like surface.

The study of surface modifications under the high-
power pulsed plasma streams was performed using three
different facilities: QSPA Kh-50, MPC, and PPA.
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Fig. 2. SEM images at various magnifications of IGP
tungsten transversal sample: a — in as-received state;
b — exposed to the hydrogen QSPA plasma,

Thase = 400 °C; ¢ — exposed to the short-pulse helium
plasma of MPC, Tpase = RT. Scale bar — 1 um

The large-scale QSPA Kh-50 device [13-18, 26, 29]
reproduced the fusion reactors transient conditions. The
main parameters of the QSPA hydrogen plasma streams
included an ion impact energy of about 0.4 keV, a
maximum plasma pressure of 0.32 MPa (higher than the
plasma pressure relevant to fusion reactors), and a
stream diameter of 18 cm. The plasma pulse shape was
approximately triangular with a pulse duration of
0.25 ms. The plasma stream energy density was up to
3 MJ/m?. The samples were preheated to the required
initial temperatures (Tpase) USINg a special heater [26]
before and between plasma pulses.

The MPC facility [11, 27] generated helium
compressed plasma streams with a plasma density (ne)
around 10'® cm3, and a plasma energy density ranging
from 0.05 to 0.5 MJ/m?. The discharge half-period was
equal to about 10 ps. The experiments were carried out
using pure helium at an initial pressure of 266.64 Pa.

The pulsed plasma accelerator, PPA [28], generated
nitrogen plasma streams with ion energies of 350 eV
and a plasma density of (2...20)-10* cm?3. Plasma
energy density varied in the range from 0.05 to
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0.4 MJ/m? and the plasma stream duration amounted to
about 5 ps.

The heat loads onto the exposed surfaces were
selected to operate above the melting threshold of the
treated materials [15-18, 27, 28].

Fig. 3. SEM images at various magnifications
of polished AM W sample: a — in as-received state;

b — exposed to the hydrogen QSPA plasma,
Thase = 600 °C. Scale bar — 1 um

The ion source DSM-2 [29] was used for sputtering of
some samples. An ion source was the system based on a
microwave discharge in hydrogen within a mirror
magnetic trap, which was operated at the electron cyclotron
resonance (ECR) frequency of 2.37 GHz. The plasma
density (ne) in this system was about 10'° cm™, and the
electron temperature T, reached about 5eV. The plasma
ions were accelerated by applying a negative potential
(-200 V) to the water-cooled holder. The base temperature
of a sample during ion beam exposure was controlled by
adjusting the cooling rate of the sample holder.

The microstructure was examined using SEM (JSM
7001F) equipped with an energy-dispersive X-ray
analysis system (EDXA, Inca Energy-350). Mass
measurements were performed during the experiment to
monitor the mass loss (AM) with an accuracy of 15 pg.

2. ADVANCED TUNGSTEN MATERIALS
UNDER HIGH-POWER PULSED PLASMA
LOADS

The samples of IGP tungsten (see Figs. 1,a; 2,a)
were exposed to QSPA Kh-50 plasma with the surface
heat load of 0.75 MJ/m? and Tpase = 400 °C during an
experimental series consisting of 200 pulses [18]. The
affected surfaces were characterized by the formation of
melted and consequently re-solidified layer and
networks of intergranular cracks [18]. The width of such
cracks reached up to several um.
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Fig. 4. SEM images at various magnifications of
polished AM WTa sample: a — in as-received state;
b — exposed to the hydrogen QSPA plasma,
Thase = 600 °C; ¢ — exposed to short-pulse helium
plasma of MPC, Tyase = RT. Scale bar — 1 um

A corrugated structure was also formed on exposed
surfaces as a result of repetitive plasma impacts.
Moreover, the exposed surface of the R sample showed
the presence of the fine cellular structure with a typical
cell size of 150...250 nm (see Fig. 1,b). At this time,
SEM images of surface modification of the T sample
revealed only small clusters of the cellular structures
that are isolated from each other (see Fig. 2,b).

It should be noted that after 10 plasma pulses with
the surface heat load of 0.4 MJ/m? in the MPC facility at
an initial temperature, Tpase = RT, the cellular structure
with the cell sizes ranging from 150 to 400 nm appeared
on the surface of the T sample (see Fig. 2,c).

The perspective AM W (see Fig. 3,a) and AM WTa
(see Fig. 4,a) materials were tested under 5 pulses of
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QSPA Kh-50 plasma, with initial temperature, Tpase,
maintained at 500 °C [3, 5]. The surface heat load, as
measured with a calorimeter, achieved a level of
1.1 MJ/m?. The surface analysis of the exposed samples
revealed the presence of the re-solidified layer, cracks,
pores, and balls [5]. Finally, the fine cellular structures
were observed on the surface of all samples, with
typical cell sizes of 150...500 nm (see Figs. 3,b; 4,b).
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Fig. 5. SEM images at various magnifications of
Hastelloy N sample exposed to short-pulse nitrogen
plasma of PPA. Tpase = RT.

Scale bars: 10 um (a); 1 um (b)

Furthermore, the latticed sample of AM WTa was
damaged by 10 pulses of MPC plasma with the surface
heat load of 0.4 MJ/m? at an initial temperature,
Thase = RT. Similar to the exposure in the QSPA, the
cellular structure with cell sizes ranging from 150 to
500 nm occurred on the surface (see Fig. 4,c).

3. SURFACE MODIFICATIONS
OF HASTELLOY AND EUROFER ALLOYS

A modified surface layer with an essentially changed
structure has been formed in Hastelloy samples as a
result of exposure to 5 plasma pulses in the PPA
facility, with the surface heat load of 0.3 MJ/m? (Fig. 5)
at an initial temperature, Tpse =RT. Fig.5,a
demonstrates typical “large-scale” grain structures with
grain sizes up to 50...100 um and the absence of the
cracks or other visual macro-defects. Nevertheless,
Fig. 5,b at higher magnification reveals that short-pulse
plasma of PPA caused the development of the cellular
structures with submicron- and nano-dimension. In
particular, the typical cell sizes are 200...500 nm.
Furthermore, it is worth mentioning that these ordered
cellular surface structures are primarily oriented along
the direction of surface machining, which was
previously applied for sample surface preparation.

Fig. 6. SEM images at various magnifications of
EUROFER sample: a — in as-received state;
b — exposed to the QSPA plasma; ¢ — exposed to the
QSPA plasma and consequent H-ion beam.
Thase = 200 °C. Scale bars: 1 um (a, c), 100 nm (b)

The EUROFER sample (Fig. 6,a) was exposed to
consequent pulsed and steady-state plasma irradiation.
In particular, the QSPA performed the impact of 10
plasma pulses of 0.6 MJ/m2. DSM-2 facility was used to
provide the H-ion beam bombardment under normal
incidence of the pre-damaged sample to an equivalent
QSPA fluence of 2.4:10%*m2. For that reason, the
sputtering procedure was carried out over a duration of
5h with a current density of 2.1671 mA-cm2. The
initial temperature, Tpase, Of the samples during the
exposures was 180 °C.

Pulsed plasma loads resulted in changes in the
surface microstructure of the exposed sample. The
surface analysis reveals the pronounced sputter erosion
morphology and an increased roughness due to the
difference in height among grains. In addition, SEM
images show the presence of the pores and cellular
structures in the re-solidified layer of affected
EUROFER. The typical sizes of the observed cells were
150...400 nm.

The steady-state irradiation of the sample caused the
development of the surface relief typical for physical
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sputtering. Traces of the cellular structures have not
been observed.

The sample was weighted both before and after the
sputtering procedure. The measured mass loss (Am)
achieved 415 pg.

4. DISCUSSION AND CONCLUSIONS

Pulsed plasma exposures led to the surface
modifications of samples made from various materials.
Applied plasma loads caused the development of the re-
solidified layers and cellular structures on the exposed
surfaces.

The cellular structures on the solidified metal
surfaces due to thermocapillary (Benard-Marangoni)
convection caused by surface tension gradient are a
distinctive and often visually striking pattern of surface
morphology [20-24]. This phenomenon occurs during
the cooling and solidification of molten metals or alloys
when Benard-Marangoni convection influences the flow
and distribution of material on the surface. The material
is transported from the regions of lower surface tension
(warmer areas) to the regions of higher surface tension
(cooler areas). Therefore, it accumulates and solidifies in
certain regions, forming cells. These cells have distinct
boundaries and often exhibit a hexagonal or polygonal
shape [20-24] and tend to align along the direction of the
temperature gradient. This process could be influenced by
the concentration of surface-active elements or
impurities.

In our experiments, the highest temperature gradient
of ~ 108 K-m* develops across the liquid-solid interface,
followed by the rapid solidification of material due to
one plasma impact. The ultrafast cooling rates of
~10°...10" K-s* are achieved driven by the contact of
the thin melt layer and the massive bulk of the sample.
Therefore, the solidification rate is ~ 102 m/s.

The sizes of observed cells reached 150...500 nm,
slightly depending on the material and used plasma
species.

The depth of the sputtered layer (d) of the
EUROFER sample, assuming Fe as its material, derived
from weight-loss measurements, dm, (area of the
sample, S=1.8-10*m?) is d =300 nm. The depth of
molten Fe under QSPA pulse is hmeir=~30 um [11].
Therefore, the depth of the cellular sub-grain structure,
h <d << hmer, and h is close to the observed size of the
cells on the exposed surface. The obtained results are in
agreement with the experimental data from [20-24].

Finally, the sub-grain patterns probably were created
by Bénard-Marangoni instability superimposed on the
macro-grain solidification that is determined by the
parameters of the temperature gradient and
solidification rate [20-24].

The surface modifications resulting from the
solidification process in various materials were
characterized in the experiments conducted at QSPA,
MPC, and PPA, involving different plasma stream
conditions, such as varying pulse duration, plasma
species, and applied heat loads.

The plasma impacts led to the formation of the re-
solidified layers on the exposed surfaces, accompanied
by the presence of the cracks, progressive corrugations,
pores, and spheres observed on the irradiated surfaces.

The fine cellular structure with the typical cell size
of 150...500 nm appeared in the re-solidified layer for
materials including IGP W, AM W/Ta, Hastelloy, and
EUROFER samples.

A submicron-sized cellular sub-grain structure on
the exposed surfaces can be attributed to the high-
temperature gradient within the molten layer, influenced
by the Bénard-Marangoni instability superimposed on
the macro-grain solidification process.
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OCOBJINBOCTI MOJIUPIKAIIN Y TEPE3ATBEPALIAX MMOBEPXHSIX
HEPCIIEKTUBHUX MATEPIAJIIB I AI€10 ITIOTYKHUX IIVIASMOBUX IMITYJIBCIB

C.C. I'epawenxo, B.O. Maxnaii, 1.€. I'apkywa, 10.B. Ilempoe, M.M. Axcvonoe, M.B. Kynux, /I.B. €nicees,
ILB. Illesuyk, FO.€. Boaxosa, T.M. Mepenuxosa, M. Wirtz

Posrmsinyro Momumdikariii MOBEpXOHb IEPCIIEKTUBHUX MaTepialiB 3a JOMOMOTOI0 cepii MOBTOPIOBAaHUX
TUIa3MOBHX IMITYJIbCIB, SIKI CIIPUYMHSUTH TUIaBJIeHHS! BoJb(ppamy. OcoONMMBOCTI HMOIIKO/HKEHOTO MIapy pedepeHTHHX
marepianis (IGP W, AM W/WTa, Xacrenoit Ta EUROFER) simepHoi Ta TepMOSIZIEpHOI €HEPreTHKH JOCIIKYBATH
micis BIMBY 1ia3Mu B ycranoBkax (KCIIIT, MIIK i ITTIT) 3 pi3HOO TPUBATICTIO IIA3MOBUX iMITYNbCIB. JleTanbHuit
aHaJ3 TMOBEPXHI MPOBOAMIM 32 JOMOMOTOK PAaCTPOBOi €IEKTPOHHOI Mikpockorii. Byno BusBieHO, mo mia3MoBa
00poOka mpu3Bena 10 (GopMyBaHHS MOAM(IKOBAHOIO MIapy B pe3yjbTaTi IIBHAKOTO HMOBTOPHOIO 3aTBEpAiHHS
€KCIIOHOBAHOI TMOBEpXHi. Y TMepe3aTBEepIUIMX IIapaX OIMPOMIHEHHX MaTepialiB 3'SBHINCS IpiOHOKIITHHHI
CTPYKTYpPH 3 THIIOBUMH po3Mipamu KoMipok Omm3bko 150...500 HM. 301IbLICHHS MIOPCTKOCTI €KCIIOHOBAHUX
MTOBEPXOHB MOSICHIOBAJIOCS HASIBHICTIO TPIIIKH 1 TOBTOPHO 3aTBEPALIOrO Mapy.
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