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The two-phase one-dimensional Stefan problem (SP) with the boundary between the phases moving with time is 

considered. The position of the boundary is determined by the modified Stefan condition (MSC), which is obtained 

from the original nonlinear diffusion equation by integrating over a thin transition layer, and by tending its thickness 

to zero. Upon receipt of the MSC, the diffusion coefficient is represented by the sum of the Heaviside step functions. 

It is shown that the MSC differs from the standard one in that in the latter, the derivatives of the concentrations with 

respect to the phase coordinates are interchanged. An expression for the displacement of the interphase boundary is 

obtained, which, as in the standard SP, is proportional to the square root of time. The results of using the MSC are 

confirmed by experimental data on the displacement of the Cu/Sn interface during diffusion bonding during 

isothermal annealing. 

 

INTRODUCTION 

The Stefan problem (SP) appeared as a result of 

research into the melting of the Earth's polar ice cap [1, 

2]. From a mathematical point of view, SP is a boundary 

value problem for a second-order partial differential 

equation of parabolic type [3], which describes the 

movement of the interface between two phases over time. 

The interface between the phases moves as a result of 

external thermal action, accompanied by a change in the 

phase states of the substance (dissolution or 

crystallization). The speed of movement of the interfacial 

boundary (IB) is set by the difference in diffusion flows 

from one side and the other. 

In addition to the problem of ice melting with a 

moving boundary between water and ice, examples of 

physical processes with a moving interface are, for 

example, problems of melting a solid with an unknown 

boundary between the solid and liquid phases, problems 

of concentration redistribution as a result of mutual 

diffusion in metal alloys with a moving boundary phase 

separation of different chemical composition, the problem 

of solidification, metal and non-metal castings [4]. 

For the first time, the study of the motion of the phase 

boundary of a homogeneous liquid-solid body was carried 

out in [5] by French scientists, corresponding members of 

the St. Petersburg Academy of Sciences G. Lame and 

B.P. Clapeyron. This formulation of the problem is due to 

the search for physical models that describe the formation 

of the earth's crust. In this work, it was found that the 

thickness of the solid phase formed during the cooling of 

a homogeneous liquid increases with time in proportion 

to   √ , where   is the process development time. 

The work [6] considers some issues of thermal 

conductivity in a melting ice prism and, as an application, 

the temperature distribution in a rod with different 

thermal constants at negative and positive temperatures. 

In this paper, it is shown that, as in the Lame and 

Claiperon problem, the temperature difference boundary 

shifts proportionally to  √ . 
Since the first publication on the study of the motion 

of the phase boundary, a large number of works have 

been done on this topic, which later became known as 

the SP. They are devoted to the solution of the SP with 

a moving and free boundary (M-FBP) for the diffusion 

equation (H-DE) both in theoretical and applied 

consideration [7]. 

In this paper, as an example, we will focus on the 

analysis of one of the SP with a moving and free 

boundary (M-FBP) for the diffusion equation (H-DE). 

Diffusion phase transformation in solids is often 

modeled in terms of the two-phase Stefan model [8]. 

In this case, the mathematical formulation of the 

problem takes the form of two partial differential 

equations (with appropriate boundary conditions) 

describing diffusion in both phases, and a material 

balance equation at the interface. The problem of the 

two-phase Stefan model is solved by analytical 

methods, provided that the diffusion coefficients are 

constant, and the boundary value and initial conditions 

remain unchanged. 

In this paper, we propose an analytical method for 

solving a one-dimensional two-phase SP diffusion 

interaction in a binary metallic system, in which a new 

method for formulating the boundary condition on a 

moving boundary is proposed. 
 

ONE-DIMENSIONAL TWO-PHASE SP 

IN A SEMI-BOUNDED DOMAIN WITH A 

MODIFIED MOVABLE INTERPHASE 

BOUNDARY 

Let us consider the process of diffusion interaction 

in a binary metallic system AB with phases   α, β, 

which are regular solid solutions. On the schematic 

representation of the geometry of diffusion interaction 

in the (   ) plane, we denote by  ( ) position of the 

moving interface (Fig. 1), where  (   ) is the 

concentration of the binary two-phase system, x is the 

coordinate,     – time. On Fig. 1 α  the phase is 

located in the region      ( ), and β  the phase 

is located in the interval  ( )     ,   (   ) is the 

concentration of the i phase. For simplicity of 

calculations, we assume that far from the interface, the 

concentration of phases is constant, i.e.    (    
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 ( )  )    (   )    ,   ( ( )       )  
  (   )    . 

 

Fig. 1. Scheme of distribution of concentrations in a 

binary metal system 

The equation for changing the phase concentration of 

a one-dimensional two-phase SP is written in a 

generalized form: 
 

  
 (   )  

 

  
( (   )

 

  
 (   )),            (1) 

where  (   )  coordinate-dependent diffusion 

coefficient. 

As conditions on the boundaries of the region, we set 

the following: 

 (   )    ;    (2) 

 (   )    ;    (3) 

 ( ( )  )     .    (4) 

where         . 

Equation (1) should be supplemented by the equation 

of motion of the interface. In the literature, this equation 

is known as the Stefan condition [1]. From physical 

considerations, it is clear that the motion of the boundary 

occurs when there is a difference in particle fluxes from 

one phase to another. Therefore, the driving force of the 

displacement of the interface is contained in the initial 

conditions (2). In the classical formulation of SP, to 

describe the diffusion of heat between water and ice, this 

condition has the form: 

  ( )    ( )   

  
   
  

   
   
  

   
  ( )
  

}         ( )  (5) 

where    – thermal conductivity coefficients of phases; 

  ( ) – phase temperature;   – phase density;    latent 

heat needed to melt ice. 

The last of the conditions (5) was obtained based on 

the balance of the amount of heat supplied to the interface 

from the water and the amount of heat lost to ice, 

provided there are no heat sources at the interface. 

Let us find solutions to equation (1) with boundary 

conditions (2)(4). Since the diffusion coefficients 

 (   ) far from the interface are constants, solutions (1) 

in these regions can be represented as [9]: 
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 √   
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where    ( )  
 

√ 
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 – error function, 

  
       

 ,    
 
      

 
 – constants determined from 

conditions (2)(4). 

From the value of concentrations at the boundaries 

of the region (2), (3), we determine the constants 

  
     

 :  

  
       

 
     (7) 

With constants   
    

 
 determine the conditions at 

the interface (4): 

  
  

     

   (
 ( )

 √   
)
  

(8) 

  
 
 

     

   (
 ( )

 √   
)
  

From (8) implicitly follows the equality   ( )  

 √  , where   – constant. Thus, from (8) we obtain 

the well-known result of the SP on the dependence of 

the displacement of the interface on time [1, 9]. 
 

MODIFIED STEPHAN CONDITION AT 

THE INTERPHASE BOUNDARY 

In this article, we propose a new, modified, Stefan 

condition in the SP. This condition can be obtained 

from equation (1) by integrating over a thin transition 

layer with a thickness     on both sides of the phase 

boundary:   ( )       ( )   . After the 

integration operation, the layer thickness tends to zero 

(   ). To simplify the procedure for integrating 

over a thin transition layer, we assume that the 

diffusion coefficients  (   ) far from the interface are 

constant: 

 (   ( )     )           ,  

 (   ( )     )           . 

In this case, we represent the diffusion coefficient 

 (   ) in a model form  the sum of the Heaviside 

functions:  

 (   )  

    ( ( )     )     (   ( )   )  (9) 

where  ( ) – asymmetric identity function that 

satisfies the conditions  ( )    if    ,  ( )    if 

   .  

The graph of the dependence of the diffusion 

coefficient of the medium  (   ( )  ) on the 

coordinate   for the boundary between the phases 

   ( ) is shown in Fig. 2. 

 
Fig. 2. Model dependence of the coefficient 

diffusion of the medium  (   ) on the coordinate   

and phase boundaries    ( ) 

The summation of the diffusion coefficients of 

both phases in the transition layer (9) is associated 

with the assumption that the superimposition of the 
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diffusion motion of particles does not lead to their 

extinction, but, on the contrary, intensifies it, i.e., leads to 

an increase in the diffusion coefficient. The assumption 

about the summation of characteristic parameters in the 

transition layer, for example, the viscosity of contacting 

liquid media, turned out to be productive in describing the 

Kelvin-Helmholtz (KH) instability [10]. The use of such 

an approach made it possible to lower the theoretical limit 

of the threshold rate of the onset of KH instability to the 

experimental one. However, for the surface tension 

coefficients of two contacting liquids, this approach is not 

applicable. The surface tension coefficients in the 

transition layer are subtracted according to the Antonov 

rule [11], which is confirmed experimentally. 

The representation of the jumping diffusion 

coefficients of two phases as a step function allows us to 

write one diffusion equation of the form (1) with a 

coordinate-dependent total diffusion coefficient. 

Let us integrate the function equal to zero 
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within infinite limits: 
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1. Calculate the sum of the first and third integrals of 

equality (10). 
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Expand N(x,t) in a Taylor row in ambit x = s(t): 
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+… . In this case, the 

following inequality    ( )      is true. 
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In the second integral, we can replace  ( ( )  ) 

with N(x, t), since it was noted earlier that x  s(t). 

Then: 
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2. Calculate the second integral of the equality (10): 

∫ (
 

  
 (   )) (
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∫ (   (   ( )   )    (  
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Thus, expression (10), after integration, takes the 

form: 

∫  (   )   
  

  

  ( )

  
(  (   )    (   ))  

   
 

  
  ( ( )  )   

 

  
  ( ( )  )   .          (13) 

From (13) it follows that the rate of movement of 

the interface in the modified representation is equal to: 

  ( )

  
 
  

 
  
  ( ( )  )   

 
  
  ( ( )  )

     
  

(14) 

The standard Stefan condition (see, for example, 

[1]) is that the motion velocity IB is proportional to 

the difference between the products of the diffusion 

coefficient of the   phase and the derivative of the 

concentration of the   phase with respect to the 

coordinate and the product of the diffusion coefficient 

of the   phase with the derivative of the concentration 

of the   phase with respect to the coordinate, t.e. is 

proportional to the quantity   
 

  
  ( ( )  )  

   
 

  
  ( ( )  ). The difference between the 

modified Stefan condition (14) and the standard one is 

that in the latter, the derivatives of the concentrations 

with respect to the coordinate  ( ) of the phases are 

interchanged. 

Expressions (7), (8), (14) imply the modified 

Stefan condition: 
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By substituting into (15)  ( )   √ , we obtain a 

transcendental equation to determine  : 
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(16) 

Let us rewrite (16) in a form more convenient for 

application to experimental data by making the following 

substitutions     √  ⁄ ,      
   ⁄ , we obtain the 

equation: 
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where         ⁄ ,      .  
 

We assume in equation (17) that the inequalities 

 √  ⁄         , is true and find its solution for the 

case    . 

Then from equation (17) we find the value of the 

coefficient  : 

  √   √   
   

  
  

  
  

  

    
  (18) 

 

 

DISCUSSION OF THE OBTAINED RESULTS 

Let us check the applicability of the obtained value of 

the coefficient (18) on the experimental results on the 

displacement of the Cu/Sn interface during diffusion 

bonding as a result of isothermal annealing at 

temperatures of 433…473 K [12]. In this work, it is 

shown that, as a result of annealing, composite layers 

(compounds) consisting of Cu3Sn and Cu6Sn5 are formed 

at the Cu/Sn interface. The boundaries between 

Cu/Cu3Sn/Cu6Sn5/Sn move in proportion to   , where the 

exponent n depending on the temperature of 433, 453, 

473 K is 0.37, 0.43, 0.5, respectively. 

To verify the agreement between the results of the 

theoretical model and the experiment, we select the data 

for annealing the samples at a temperature of 473 K in an 

oil bath with silicone oil. The choice of data at such an 

annealing temperature is due to the fact that in this case 

diffusion along grain boundaries is excluded, and there is 

only volume diffusion, which is considered in the 

proposed model. It follows from the experiments that the 

displacement of the interfacial boundary of the total 

thickness of two layers of the compound   increases 

monotonically with increasing annealing time   
according to law    (   ⁄ )   , where        – unit 

of time, one second,   – a constant having the 

dimension of length in SI – m, one meter. In this case, 

the layers of compounds move with time according to 

one law. 

To calculate the constant  , which in [12] is 

denoted  , let us set the values of the diffusion 

coefficients on both sides of the transition layer. 

Denote    diffusion coefficient at the boundary 

Cu/Cu3Sn [13]:             
             m

2
/s, 

and     diffusion coefficient at the boundary 

Sn/Cu6Sn5:               
             m

2
/s. 

Concentration ratio      ⁄  determined by the ratio 

of densities:     ⁄         ⁄      .  

Substitution in (18) of the values of the diffusion 

coefficients    and    gives the value of the 

coefficient    

            √
 (  

  
  
)

    
.                   (19) 

 

It follows from the experimental data [12] that for 

the total total thickness of the compound, the 

dimensionless constant     , where      m  unit 

of length 1 m, determined by the value                      

           . It follows from (18) that for the ratio 

of order constants    
 ⁄        constant value   is 

close to experimental value  . 

Thus, the comparison of the theoretical 

consideration of the SP using a new approach in 

describing the motion of the interfacial boundary with 

experimental data indicates the validity of the 

proposed method for obtaining the Stefan condition. 

This conclusion, under certain assumptions, is based 

on the correspondence between the theoretically 

calculated distance of displacement of the interface 

and the experimental one. 

Substitution of the experimental data [12, 13] into 

the standard (not modified) Stefan condition gives a 

negative value of the coefficient  : 
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Hence it follows that IB moves in a direction that 

is opposite to that observed in the experiment. 

This result speaks in favor of using the modified 

Stefan condition, which describes the motion of IB in 

problems of heat conduction or diffusion. 

CONCLUSIONS 

The article analyzes the state of the art in research 

related to diffusive phase transformation in solids, 

both as a result of heat transfer and diffusion of 

particles. Such problems are modeled within the 

framework of the two-phase SP with the boundary 

between the phases moving with time. The position of 
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the moving boundary between the phases is determined 

by the Stefan condition, which follows from the condition 

of equality of heat or particle fluxes on both sides of the 

phases. This condition can be obtained from the original 

diffusion equation, in which the diffusion coefficient 

should be considered to be coordinate-dependent, by 

integrating over a thin transition layer, and by tending the 

layer thickness to zero. This layer includes an interfacial 

boundary, where the value of the diffusion coefficient 

changes abruptly from one value to another. If we assume 

that the diffusion coefficient in the transition layer is 

equal to zero, then we arrive at the standard and 

thoroughly studied SP with a moving interface. 

In the present work, the assumption is made that the 

diffusion coefficients of both phases in the transition layer 

are summed, and the modified Stefan condition is 

obtained by the integration method. It is shown that, as in 

the standard SP, the displacement of the interface is 

proportional to the square root of time. 

It is shown that the modified Stefan condition differs 

from the standard one in that in the latter, the derivatives 

of the concentrations with respect to the coordinate α(β) 

of the phases are interchanged. 

To verify the validity of the modified Stefan condition 

obtained in this work, we used the experimental results on 

the displacement of the Cu/Sn interface during diffusion 

bonding as a result of isothermal annealing. Under certain 

assumptions about the parameters of the Cu/Sn interface, 

a good quantitative agreement was obtained between the 

results arising from the modified Stefan condition and the 

experimental results. 

Comparison of the interface displacement, which 

follows from the standard SP, with the experimental data 

leads to a contradiction: the theoretically calculated 

displacement of the interface is directed in the direction 

opposite to that observed in the experiment. 
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МОДИФІКОВАНА УМОВА СТЕФАНА В ЗАДАЧІ СТЕФАНА 

Д.Г. Бєлих, С.Ф. Скоромна, В.І. Ткаченко 

Розглянуто двофазну одновимірну задачу Стефана (ЗС) з межею між фазами, що переміщується з часом. 

Положення межі визначається модифікованою умовою Стефана (МУС), яка отримана з вихідного 

нелінійного рівняння дифузії методом інтегрування по тонкому перехідному шару і устремлінням його 

товщини до нуля. При отриманні МУС коефіцієнт дифузії представлений сумою ступінчастих функцій 

Хевісайду. Показано, що МУС відрізняється від стандартної тим, що у неї похідні концентрації фаз по 

координаті змінюються місцями. Отримано вираз для переміщення міжфазного кордону, яке, як і у 

стандартній ЗС, пропорційне квадратному кореню з часу. Результати використання МУС підтверджуються 

експериментальними даними щодо переміщення межі Cu/Sn при дифузійному з'єднанні при ізотермічному 

відпалі. 
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