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The two-phase one-dimensional Stefan problem (SP) with the boundary between the phases moving with time is
considered. The position of the boundary is determined by the modified Stefan condition (MSC), which is obtained
from the original nonlinear diffusion equation by integrating over a thin transition layer, and by tending its thickness
to zero. Upon receipt of the MSC, the diffusion coefficient is represented by the sum of the Heaviside step functions.
It is shown that the MSC differs from the standard one in that in the latter, the derivatives of the concentrations with
respect to the phase coordinates are interchanged. An expression for the displacement of the interphase boundary is
obtained, which, as in the standard SP, is proportional to the square root of time. The results of using the MSC are
confirmed by experimental data on the displacement of the Cu/Sn interface during diffusion bonding during

isothermal annealing.

INTRODUCTION

The Stefan problem (SP) appeared as a result of
research into the melting of the Earth's polar ice cap [1,
2]. From a mathematical point of view, SP is a boundary
value problem for a second-order partial differential
equation of parabolic type [3], which describes the
movement of the interface between two phases over time.
The interface between the phases moves as a result of
external thermal action, accompanied by a change in the
phase states of the substance (dissolution or
crystallization). The speed of movement of the interfacial
boundary (IB) is set by the difference in diffusion flows
from one side and the other.

In addition to the problem of ice melting with a
moving boundary between water and ice, examples of
physical processes with a moving interface are, for
example, problems of melting a solid with an unknown
boundary between the solid and liquid phases, problems
of concentration redistribution as a result of mutual
diffusion in metal alloys with a moving boundary phase
separation of different chemical composition, the problem
of solidification, metal and non-metal castings [4].

For the first time, the study of the motion of the phase
boundary of a homogeneous liquid-solid body was carried
out in [5] by French scientists, corresponding members of
the St. Petersburg Academy of Sciences G. Lame and
B.P. Clapeyron. This formulation of the problem is due to
the search for physical models that describe the formation
of the earth's crust. In this work, it was found that the
thickness of the solid phase formed during the cooling of
a homogeneous liquid increases with time in proportion
to +/t, where t is the process development time.

The work [6] considers some issues of thermal
conductivity in a melting ice prism and, as an application,
the temperature distribution in a rod with different
thermal constants at negative and positive temperatures.
In this paper, it is shown that, as in the Lame and
Claiperon problem, the temperature difference boundary
shifts proportionally to +t.

Since the first publication on the study of the motion
of the phase boundary, a large number of works have

been done on this topic, which later became known as
the SP. They are devoted to the solution of the SP with
a moving and free boundary (M-FBP) for the diffusion
equation (H-DE) both in theoretical and applied
consideration [7].

In this paper, as an example, we will focus on the
analysis of one of the SP with a moving and free
boundary (M-FBP) for the diffusion equation (H-DE).

Diffusion phase transformation in solids is often
modeled in terms of the two-phase Stefan model [8].
In this case, the mathematical formulation of the
problem takes the form of two partial differential
equations (with appropriate boundary conditions)
describing diffusion in both phases, and a material
balance equation at the interface. The problem of the
two-phase Stefan model is solved by analytical
methods, provided that the diffusion coefficients are
constant, and the boundary value and initial conditions
remain unchanged.

In this paper, we propose an analytical method for
solving a one-dimensional two-phase SP diffusion
interaction in a binary metallic system, in which a new
method for formulating the boundary condition on a
moving boundary is proposed.

ONE-DIMENSIONAL TWO-PHASE SP
IN A SEMI-BOUNDED DOMAIN WITH A
MODIFIED MOVABLE INTERPHASE
BOUNDARY

Let us consider the process of diffusion interaction
in a binary metallic system A—B with phases i =a, f,
which are regular solid solutions. On the schematic
representation of the geometry of diffusion interaction
in the (N, x) plane, we denote by s(t) position of the
moving interface (Fig. 1), where N(x,t) is the
concentration of the binary two-phase system, x is the
coordinate, t > 0 — time. On Fig. 1 a — the phase is
located in the region 0 < x < s(t), and 8 — the phase
is located in the interval s(t) < x < o, Ni(x, t) is the
concentration of the i phase. For simplicity of
calculations, we assume that far from the interface, the
concentration of phases is constant, i.e. N*(0 < x <
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Fig. 1. Scheme of distribution of concentrations in a
binary metal system

The equation for changing the phase concentration of

a one-dimensional two-phase SP is written in a
generalized form:

a a 7]

ING,D =2 (D00 2N D), 1)
where D(x,t) —  coordinate-dependent  diffusion

coefficient.
As conditions on the boundaries of the region, we set
the following:

N(0,t) = Ng; 2)
N(o0,t) = Np; (3)
N(s(t),t) = N;. 4

where N, > Ng > Np.

Equation (1) should be supplemented by the equation
of motion of the interface. In the literature, this equation
is known as the Stefan condition [1]. From physical
considerations, it is clear that the motion of the boundary
occurs when there is a difference in particle fluxes from
one phase to another. Therefore, the driving force of the
displacement of the interface is contained in the initial
conditions (2). In the classical formulation of SP, to
describe the diffusion of heat between water and ice, this
condition has the form:

To,(x) =Ty (x) =0 if x=s(t)
aT, T, ds(t = ’ 5
T~ Gt = 1o 251 ©
where K; — thermal conductivity coefficients of phases;
T;(x) — phase temperature; p — phase density; L — latent
heat needed to melt ice.

The last of the conditions (5) was obtained based on
the balance of the amount of heat supplied to the interface
from the water and the amount of heat lost to ice,
provided there are no heat sources at the interface.

Let us find solutions to equation (1) with boundary
conditions (2)—(4). Since the diffusion coefficients
D(x,t) far from the interface are constants, solutions (1)
in these regions can be represented as [9]:

K;

N%(x,t) = Nf — N&erf (N%)
(6)
-t -t
NP(x,t) = N — N, erf 77)
2 rz _gz2 .
where erf(z)=ﬁfoe §°d¢  — error  function,
Nf, Nf, Nf, N,f — constants  determined  from

conditions (2)—(4).

From the value of concentrations at the boundaries
of the region (2), (3), we determine the constants
N, NS

N{ = N, Nf = Ng. @)

With constants N7, Nf determine the conditions at

the interface (4):

N& = Ny — N
2= s Y
erf(m/w&) .
vp o _ta= 1 (®)
s@) Y
erf(2 rDﬁ)

From (8) implicitly follows the equality s(t) =
A+t , where A — constant. Thus, from (8) we obtain
the well-known result of the SP on the dependence of
the displacement of the interface on time [1, 9].

MODIFIED STEPHAN CONDITION AT
THE INTERPHASE BOUNDARY

In this article, we propose a new, modified, Stefan
condition in the SP. This condition can be obtained
from equation (1) by integrating over a thin transition
layer with a thickness e <« [ on both sides of the phase
boundary: s(t) —e < x < s(t) +¢. After the
integration operation, the layer thickness tends to zero
(e = 0). To simplify the procedure for integrating
over a thin transition layer, we assume that the
diffusion coefficients D (x, t) far from the interface are
constant:

D(x < s(t) — ¢,t) = D* = const,,
D(x = s(t) + &,t) = DP = const,.

In this case, we represent the diffusion coefficient
D(x,t) in a model form — the sum of the Heaviside
functions:

D(x,t) =
=D%O(s(t) —x + &) + DPO(x — s(t) + ¢), ©)

where 6(x) — asymmetric identity function that
satisfies the conditions 8(x) = 1ifx >0, 8(x) =0 if
x <0.

The graph of the dependence of the diffusion
coefficient of the medium D(x — s(t),t)on the
coordinate x for the boundary between the phases
x = s(t) is shown in Fig. 2.
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Fig. 2. Model dependence of the coefficient

diffusion of the medium D (x, t) on the coordinate x
and phase boundaries x = s(t)

The summation of the diffusion coefficients of
both phases in the transition layer (9) is associated
with the assumption that the superimposition of the
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diffusion motion of particles does not lead to their
extinction, but, on the contrary, intensifies it, i.e., leads to
an increase in the diffusion coefficient. The assumption
about the summation of characteristic parameters in the
transition layer, for example, the viscosity of contacting
liquid media, turned out to be productive in describing the
Kelvin-Helmholtz (KH) instability [10]. The use of such
an approach made it possible to lower the theoretical limit
of the threshold rate of the onset of KH instability to the
experimental one. However, for the surface tension
coefficients of two contacting liquids, this approach is not
applicable. The surface tension coefficients in the
transition layer are subtracted according to the Antonov
rule [11], which is confirmed experimentally.

The representation of the jumping diffusion
coefficients of two phases as a step function allows us to
write one diffusion equation of the form (1) with a
coordinate-dependent total diffusion coefficient.

Let us integrate the function equal to zero

G(x,t) = %N(x, t) — ;—X(D(x, t)aa—xN(x, t)) =
within infinite limits:

NG = 2 (D6 NG D) )| dx =
f_oo [EN(X, t) — (aD(x, t)) (a_xN(x' t)) -

_D(x, t)%N(x, )] dx = 0. (10)

1. Calculate the sum of the first and third integrals of
equality (10).

f a—N(x t)dx—J-_o:oD(x t) 9

2
—— N(x, t)dx =

2

“fla 0
=J. [6 N(x,t) — D(xt)

s(t)-¢ 9
= < [ |

s(t)+e 92
+f [ NGo ) = DGt 1) 5 NG )] dx +
s(t)-¢ at

*© d
+ f [— N(x,t) —
s(t)+e ot

s(t)-¢
- D(x, t) N(x t)] dx) lim <f t [atNa(x t) -

N(x t)] dx =

2

N(x,t) — D(x, t) N(x t)|dx +

a
s(t)+e

— D%(x, t) N"‘(x t)] dx +f

2
N(x t)

—N(x,t) —
(t)-¢ [af

- D(x, t) dx +

@ 0 02
+f [—Nﬁ(x,t)—DB(x,t) —ZNB(x,t)] dx) =
s(t)+e t ox

s(t)+e Kl 62
= lim (fs [§ N(x,t) — D(x,t) WN(x, t)] dx.

&-0 (t)-¢
Expand N(x,t) in a Taylor row in ambit x = s(t):

N(x,£) = N(s(t),£) + = N(s(6), ) (x — s(©)) +
+22 9 N(s(e), )(x — s(D)"+..

-——— In this case, the
following inequality x — s(t) = § < [Lis true.

266

lim ( | o (Enew.0+

20 \Js)-e
L9
Fooe 9 N(s@,0(x - s(0) + - ) >z
' s(t)+e 9

+ iN(s(t) t) G_(t)) dx)

In the second integral, we can replace N(s(t),t)
with N(x, t), since it was noted earlier that x ~ s(t).
Then:

9 s(t)+e
lim(—N(s(¢t),t +
lim <at (s(®) )S(t)_£
as(t) s(t)+e F]
—N(x,t) dx)
0t Jsy-e 0x
R ds(t) s+e ) _
—11m N(s(t) t)- 2€+6—N( t)Is(t)_E =
"’S“) =0 (NF - N). (12)

2. Calculate the second integral of the equality (10):
2 (20@0) (ZNe 0 )dx =
lim f_t: (Dﬁ(S(x —s(t) + &)—D*5(x —
s(t) — e)) N(x,t)dx =

B2 Na _pa 2 NB
DF —N (s(t),t)-D =N (s(t), t). (12)

Thus, expression (10), after integration, takes the

form:
[ 6 (x, t)dx (Nﬁ(x )= N(x,0)) -
—DB 5N“(s(t),t)+D“aNﬁ(s(t), t)=0. (13)

From (13) it follows that the rate of movement of
the interface in the modified representation is equal to:
a5 _ DF ggh (0, 0-D" F M G0,.0

at NB — N«

The standard Stefan condition (see, for example,
[1]) is that the motion velocity IB is proportional to
the difference between the products of the diffusion
coefficient of the B phase and the derivative of the
concentration of the B phase with respect to the
coordinate and the product of the diffusion coefficient
of the a phase with the derivative of the concentration
of the a phase with respect to the coordinate, t.e. is

proportional to the quantity Dﬁ;—xNﬁ(s(t),t)—

—D“:—xN“(s(t),t). The difference between the

modified Stefan condition (14) and the standard one is
that in the latter, the derivatives of the concentrations
with respect to the coordinate a(8) of the phases are
interchanged.

Expressions (7), (8), (14) imply the modified
Stefan condition:

i)s(t)

(14)
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0s(t) _ 2 JmtD¥ +
ot NB — N« (15)
g1 1 Lw)r
DeNFP — e 4tDf
4 > Jm~\tDB
NB — N«

By substituting into (15) s(t) = Avt, we obtain a
transcendental equation to determine A:

A2 s 1 _a%
2 DﬁNgﬁe_w_a 2 DN, Te 4Dhf 16
A= V= NB-ne YT Nh-na (16)

Let us rewrite (16) in a form more convenient for
application to experimental data by making the following
substitutions y = A/Z\/D_ﬁ’, Aap = D®/D# we obtain the
equation:

y =
N
(1 — N_fx) V lﬁa e—ﬂ.ﬁayz
_ ap erf((Agay) Aap s
- 7
VT Aag 1 - (17)
Ns _Ng
N& N% _y2
L tap erfy) ©
ﬁ )
Vil 4 _ %

where A,p = 1/2p,, N* > NP,

We assume in equation (17) that the inequalities
A/VNDF « 1,Aqp < 1, is true and find its solution for the

case y « 1.
Then from equation (17) we find the value of the
coefficient A:

(18)

DISCUSSION OF THE OBTAINED RESULTS

Let us check the applicability of the obtained value of
the coefficient (18) on the experimental results on the
displacement of the Cu/Sn interface during diffusion
bonding as a result of isothermal annealing at
temperatures of 433...473 K [12]. In this work, it is
shown that, as a result of annealing, composite layers
(compounds) consisting of CusSn and CugSns are formed
at the Cu/Sn interface. The boundaries between
Cu/CusSn/CugSns/Sh move in proportion to t™, where the
exponent n depending on the temperature of 433, 453,
473 K'is 0.37,0.43, 0.5, respectively.

To verify the agreement between the results of the
theoretical model and the experiment, we select the data
for annealing the samples at a temperature of 473 K in an
oil bath with silicone oil. The choice of data at such an
annealing temperature is due to the fact that in this case
diffusion along grain boundaries is excluded, and there is
only volume diffusion, which is considered in the
proposed model. It follows from the experiments that the
displacement of the interfacial boundary of the total
thickness of two layers of the compound [ increases

monotonically with increasing annealing time t
according to law [ = k(t/t,)%5, where t, = 1 s — unit
of time, one second, k — a constant having the
dimension of length in SI — m, one meter. In this case,
the layers of compounds move with time according to
one law.

To calculate the constant A, which in [12] is
denoted k, let us set the values of the diffusion
coefficients on both sides of the transition layer.
Denote D% diffusion coefficient at the boundary
Cu/CusSn [13]: D% = D¢y /cuysn = 3-53 - 10717 m?/s,
and DP — diffusion coefficient at the boundary
SN/CusSns:  DF = Dg, ey sng = 2.37 - 10716 m?s.
Concentration ratio Nf/N® determined by the ratio
of densities: N® /N® = 7.3/8.94 = 0.82.

Substitution in (18) of the values of the diffusion
coefficients D and D gives the value of the
coefficient A:

(3)

A=398-10"8- .
0.09

(19)

It follows from the experimental data [12] that for
the total total thickness of the compound, the
dimensionless constant k/k,, where k, = 1 m — unit
of length 1 m, determined by the value
k =1.69 - 1078, It follows from (18) that for the ratio
of order constants N,/N® ~ 0.985 constant value A is
close to experimental value k.

Thus, the comparison of the theoretical
consideration of the SP using a new approach in
describing the motion of the interfacial boundary with
experimental data indicates the validity of the
proposed method for obtaining the Stefan condition.
This conclusion, under certain assumptions, is based
on the correspondence between the theoretically
calculated distance of displacement of the interface
and the experimental one.

Substitution of the experimental data [12, 13] into
the standard (not modified) Stefan condition gives a
negative value of the coefficient A:

B (Ns—Ng) 1 4

~ 5 P/ - o 4pf
2 N%erf(y) +/pB
A=— +
Vr NE
NT
a (Na - Ns) 1 6_4‘2)_21
N“erf(,/l,;ay) VD«
NP <0.
Ne 1

Hence it follows that IB moves in a direction that
is opposite to that observed in the experiment.

This result speaks in favor of using the modified
Stefan condition, which describes the motion of IB in
problems of heat conduction or diffusion.

CONCLUSIONS

The article analyzes the state of the art in research
related to diffusive phase transformation in solids,
both as a result of heat transfer and diffusion of
particles. Such problems are modeled within the
framework of the two-phase SP with the boundary
between the phases moving with time. The position of
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the moving boundary between the phases is determined
by the Stefan condition, which follows from the condition
of equality of heat or particle fluxes on both sides of the
phases. This condition can be obtained from the original
diffusion equation, in which the diffusion coefficient
should be considered to be coordinate-dependent, by
integrating over a thin transition layer, and by tending the
layer thickness to zero. This layer includes an interfacial
boundary, where the value of the diffusion coefficient
changes abruptly from one value to another. If we assume
that the diffusion coefficient in the transition layer is
equal to zero, then we arrive at the standard and
thoroughly studied SP with a moving interface.

In the present work, the assumption is made that the
diffusion coefficients of both phases in the transition layer
are summed, and the modified Stefan condition is
obtained by the integration method. It is shown that, as in
the standard SP, the displacement of the interface is
proportional to the square root of time.

It is shown that the modified Stefan condition differs
from the standard one in that in the latter, the derivatives
of the concentrations with respect to the coordinate a(p)
of the phases are interchanged.

To verify the validity of the modified Stefan condition
obtained in this work, we used the experimental results on
the displacement of the Cu/Sn interface during diffusion
bonding as a result of isothermal annealing. Under certain
assumptions about the parameters of the Cu/Sn interface,
a good quantitative agreement was obtained between the
results arising from the modified Stefan condition and the
experimental results.

Comparison of the interface displacement, which
follows from the standard SP, with the experimental data
leads to a contradiction: the theoretically calculated
displacement of the interface is directed in the direction
opposite to that observed in the experiment.
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MOJUPIKOBAHA YMOBA CTE®AHA B 3AJJAUI CTE®AHA
A.I. Benux, C.®. Ckopomna, B.I. Tkauenko

PosrnsayTO NMBOodasHy onHoBuMIipHY 3amady Credana (3C) 3 Mexero Mk (azaMu, 110 MePEeMINTy€eTHCS 3 4aCOM.
ITomoxxenHs Mexi Bu3Ha4YaeThcsi MoaupixoBaHoro ymoBoro Credpana (MYC), sxka oTpuMaHa 3 BHXIJZHOTO
HeJIiHIHHOTO piBHAHHA AMQY3ii METOAOM IHTErpyBaHHsS 110 TOHKOMY IEpeXiJHOMY IIapy i yCTpPEMIIIHHAM HOro
ToBIIMHU 110 Hyns. [Ipu orpumanni MYC koediuieHT nudysii nmpepcTaBiIeHH CyMOIO CTyIiHYacTUX (YHKIIH
Xesicaiiny. Ilokazano, mo MYC Binpi3HAETbCS BiJ CTaHIApTHOI THM, IO y Hel MOXijHI KoHIeHTpauii ¢a3 mo
KOOpJMHATI 3MiHIOIOThCS MicliMH. OTpHUMaHO BHpa3 JUId NEpeMillleHHs MiK(a3HOro KOpIOHY, sIKe, SIK 1 Yy
craniaptHii 3C, nponopuiiiHe KBaJpaTHOMY KOpeHIo 3 dacy. Pe3ynpraru BukopuctaHus MYC miaTBepIuKyIOTHCS
eKCIIepUMEHTAILHUMH JaHUMH 100 repeMimenHs Mexi Cu/Sn npu mudy3iiHOMY 3'€JHaHHI IPH 130TEPMIYHOMY
BiAmami.
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