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A distinctive feature of the radiation-induced microstructure of zirconium is, firstly, the coexistence of prismatic 

loops of different natures, and secondly, the nucleation and growth to large sizes of vacancy basis loops. In the 

work, within the framework of classical concepts of elastic interaction between a point defect and internal sink the 

results of numerical calculations of the dependence of bias loops of different natures lying in the basal and prismatic 

planes of zirconium on their radius are presented. The essential role of the form of the boundary condition on the 

outer surface of loop area of influence in toroidal geometry is shown. Possibilities, both the coexistence of prismatic 

loops of different natures and the growth of vacancy basis loops are discussed.   

 

PACS: 62.20Dc;62.20.Fc 

 

INTRODUCTION 

In a given microstructure, absorption efficiency of a 

sink for a given mobile defect quantifies the effect of 

interaction energy (usually elastic energy) between the 

sink and the defect on the absorption rate of the defect. 

It has been recognized that some phenomena occurring 

under irradiation, such as void swelling [1] or 

irradiation creep [2], could be rationalized in terms of 

absorption efficiencies of the different sinks present in 

the microstructure. More precisely, the relative 

difference between the absorption efficiencies of 

interstitials and vacancies, known as the bias, plays a 

key role in understanding these radiation induced 

phenomena. Therefore, it was natural to apply the 

standard elastic ideology (EID – elastic interaction 

difference) to qualitatively describe another 

phenomenon – radiation growth (RG) of zirconium and 

its alloys [3, 4]. Irradiation growth is the volume 

conserved shape deformation of crystalline materials 

when subjected to particle irradiation. It has been found 

that zirconium during growth expands in the a -

direction and shrinks along the c -axis. Such its 

behavior is associated with the idea of Buckley S.N. 

[5, 6] that interstitial loops are formed predominantly on 

the prismatic planes of zirconium and vacancy loops on 

the basic.  Although the physics of the RG mechanism 

has changed over the years, Buckley's general concept 

has remained the same: vacancy loops nucleating and 

growing on the base planes “eating” the crystal along 

the c -axis, while growing interstitial loops, forming 

additional extra planes in the a -direction, increase its 

size. 

The main difference between the radiation-induced 

microstructure of zirconium and other hcp metals is, 

firstly, the coexistence of prismatic loops (Burgers 

vector b 1/ 3 11 2 0 ) of different kind, and , 

secondly, nucleation and growth to large sizes of 

vacancy basis loops (Burgers vector  b 1/ 2 0001 ) 

[4, 7]. The latter possibly confirms Buckley's concept.  

Frequently quoted version of the cause of RG of 

zirconium is anisotropic diffusion of radiation point 

defects (PD) between its planes (DAD theory – 

diffusional anisotropy difference) [4, 8]. However, as 

the authors themselves note, it cannot explain the fact of 

the coexistence of vacancy and interstitial loops. As for  

the basal loops, DAD theory provides only a 

fundamental possibility separating PD flows between 

straight dislocations lying in the basal and prismatic 

planes of zirconium.  And only under a certain condition 

on the PD diffusion coefficients in a - and c -

directions. However, there is no experimental 

confirmation of this condition. And, as numerical 

calculations show, it is precisely not true in the region 

of reactor temperatures [9]. Therefore, a physical cause 

of RG associated only with anisotropic diffusion of 

radiation PD seems poorly substantiated. 

The goal of this work is to analyze, within the 

framework of classical elastic theory (EID), both 

possibilities, both the coexistence of prismatic loops of 

different natures and the growth of vacancy basis loops.  

1. MAIN ELEMENTS  

OF THE EID – THEORY 

1.1. ELASTIC INTERACTION ENERGY 

Main element of EID – theory ( i j i jD D ) is the 

expression for interaction energy between a PD and 

source of the inner deformation field ( )i ju r . For PD of 

the dipole type it has the following form: 

( ) ( )ij i jE P u r r ;         ij jiP P .             (1) 

If the elastic dipole has an axis of symmetry which 

coincides with c -axis of hpc crystal, then tensor ijP  

has only diagonal components, which in the abbreviated 

description can be written as Pi=P(1,1,ε), P =Pa, 

ε = Pc/Pa.  Here Pc and Pa – strength of the force-
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dipoles in c - and a -directions. Note that in crystal 

with non-cubic symmetry quantities Pa and Pc do not 

have a simple physical meaning. Therefore, in papers 

[10, 11], by analogy with Pi=P(1,1,ε), displacement 

dipoles Qi=Q(1,1,δ), 
aQ Q , δ = Qc/Qa were 

introduced. They are connected with force-dipoles by 

relation Pi=CijQj. Here Cij is the crystal elastic moduli. 

It was assumed that the change in the volume V  of 

the finite crystal caused by a PD is related to the 

displacement dipoles by the relation (2 )V Q    . 

As a result: 
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In case of dilatation center (ε=1) for hexagonal crystal:  
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In the approximation of an elastically isotropic medium 

11 22 33 2C C C      ;   12 13C C    so that 
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Here 0.33   is the Poisson ratio; 33 GPa   is the 

matrix shear modulus. Experimental values of the 

elastic moduli of zirconium according to [12] 

( 11 3Mbar 10 J/m ): 11C = 1.154; 12C = 0.672; 

13C = 0.646; 
33C = 1.725; 

44C = 
55C = 0.363. Other 

values: 1.2iV   , 0.6vV     are the interstitial 

and vacancy relaxation volume, 29 32.36 10 m   is the 

atomic volume of the lattice. So that in dimensionless 

variables 

/ 348.1hex

i BP k T  ,  / 308.2is

i BP k T  ,  

/ 174.05hex

v BP k T   ,  / 154.1is

v BP k T   , 573 KT  . 

As can be seen, the difference in the absolute values of 

the coefficients is not large.  

 In the approximation of an elastically isotropic 

medium equation (4) for circular edge vacancy loop of 

radius R  in cylindrical coordinates ( , )r z  in units Bk T  

looks like [13]: 
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For the same loop in the basal plane of zirconium equation (4) has following form: 
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Here 
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44 33 3311 13 44 13 11 442 0C C CC C C C C C      ; 103.23 10b m   – magnitude of the Burgers vector of loop. 

Instead of 1

0I  its expression in terms of complete elliptic integrals of the first and second kind ( )K k , ( )E k  is often 

used: 
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Then the radius of the loop in (5), (6) is reduced, and 

the transition to dimensionless variables /r r b ; 

/z z b ; /R R b  allows one to reduce parameter 

b . Note that there is no angular dependence here due to 

symmetry with respect to rotation around z-axis, 

perpendicular to the loop plane. It should also be noted, 

that formulas (5), (6) were obtained by solving the 

equilibrium equations of an elastic medium in terms of 

displacements [14, 15]. But their analogues can also be 

obtained in the formalism of Green's functions [16]. It 

should be remembered that ( , )r z  – these are the 

coordinates of the observation point.  

 For prismatic a -loop in zirconium the situation is 

different. The axial symmetry in this case is absent so 

well-developed methods for solving equilibrium 

equations are not applicable. But the Green's function 

formalism remains applicable [17]:  

2 2
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The functions 2

3( ) , 2

3( )W  , 2

3( )V   are quite 

complicated. Their explicit expressions are given in 

[16]. All dependence on 2

3  is in the first integral (8), 

and additional terms associated with the contribution of 
2

1  are in the second integral. Recall that the vacancy 

a -loop is in the “yz” plane of Cartesian coordinate 

system. Its normal coincides with the positive 

direction of the “x”-axis. The integration in (8) is 

carried out over the area of the loop, therefore 

0x  . There is a dependence on the azimuthal 

angle in the loop plane here, in contrast to (5), (6). 

In Fig. 1 in dimensionless cylindrical coordinates 

sinrz  ; sinz r    ; cosry  ; cosy r    ; 

2 2 2 22 cos( )x r rr r         r r  the radial depen-

dence of the interaction energy of the vacancy prismatic 

loop (8) with the SIA ( / 348.1hex

i BP k T  ) is shown for 

four values of the angle  . 

 
Fig. 1. The radial dependence of the interaction energy of the vacancy prismatic loop (8) with the SIA for different 

values of the angle  : a – 0  ; b – / 4  ; c – / 2  ; d – 3 / 4  ; 60R b and 5x b  

We note a very weak dependence on the azimuth 

angle  , which does not change the nature of the 

interaction (sign) in each region. The interaction 

changes sign only when passing from the inner region 

of the loop ( 60r b ) to the outer one ( 60r b ). 

However, this dependence greatly complicates 

numerical calculations. Therefore, we will eliminate it 

by averaging the right side of (8) over the angle  , 

making the problem isotropic in the “ yz ” plane [19]. In 

the expression (8), the dependence on the variable “ x “ 

is quadratic, i.e. replacement xx   doesn't change 

anything. Therefore, as in the case of the basic loop, 

numerical calculations can be carried out only in one 

part of the half-space.   
 

1.2. DIFFUSION PROBLEM 

Having the interaction energy, the corresponding 

diffusion problem is then solved – the diffusion 

equation in a quasi-stationary approximation with 

boundary conditions on the inner and outer surfaces of 

the loop influence region. Following [18] we accept the 

toroidal geometry of the area of influence. Toroidal 

geometry seems more suitable for a loop than spherical 

or cylindrical one, because it allows one to perform the 

calculations for a loop of any size and without any 

correction of the elastic field in its area of influence. 

Since the angular dependence in (5), (6), and after 

averaging in (8) is absent, in terms of a variable 

( , ) ( , )exp /r C r E C    the diffusion problem in the 

cross section of coaxial toroids in the area of influence 

of the loop in dimensionless cylindrical coordinates  has 

the form: 
2 2

2 2

1
0

E E

r r rr

   

 

      
     

      
.        (9) 

Coordinate “ ” coincides with “z”, if loop is in “xy” 

plane (formulas (5), (6)), and with “x” in case (8); 

сoordinate r is a radial coordinate of the observation 

point in the loop plane.  For us, only absorption of PD is 

important, so on the inner toroidal surface 
CS  that 

contains a dislocation line (rc is the dislocation core 

radius) we use conventional boundary condition 

exp ( ) | 0e

ScC E C r : 

( , ) 0r   ;  
2

2 2 2 2 2 24cr R r R r    ; 
 

c cR r r R r    .                                  (10) 

On the outer toroidal surface (
extR  – radius of the 

generatrix of the coaxial outer torus that corresponds to 

the radius of the loop influence region) two cases are 

possible  

( , ) exp ( , )r E r   ; and ( , ) 1r   ; 
 

 
2

2 2 2 2 2 24extr R R R r    ;                 (11) 

ext extR R r R R     for extR R ;  

0 extr R R    for  extR R . 

First one corresponds to the boundary condition in 

the form ( ) |
extSC Cr , where C  is the average PD 

concentration in an effective medium that simulates the 

influence of all sinks. Second one corresponds to 

exp ( ) |
extSC E Cr . The sink bias is determined by a 

relation of the form 1 /  v iB Z Z . Here subscripts v  

and i  correspond to vacancies and SIA respectively. If 

B>0, one says that the loop has a preference to SIA. The 

dimensionless quantity ,v iZ  is called the absorption 

efficiency of the PD by the sink. It is the result of the 

diffusion problem (9)-(11) solution and looks like: 
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    
1

, , exp ( , ) ( , )
2

c ext

S

Z r R R E r r d
R

   


  n .(12) 

The integral is taken over an arbitrary surface S with 

the outer normal n containing the dislocation line. The 

cross section of this surface is shown in Figure in the 

form of a line L (Appendix). 

2. RESULTS 

The diffusion problem (9)–(11) was solved 

numerically by the finite difference method. 

Dependence of the loop bias of different nature on their 

radius for the first version of the boundary condition 

(11) | exp ( ) |Sext SextE  r  and for two values of 
extR  one 

can see on Fig. 2. The lower curves (green and yellow) 

correspond to the isotropic approximation (5); the upper 

curves (red and blue) correspond to the basal loops of 

zirconium. The solid horizontal line corresponds to a 

straight dislocation. 

 
Fig. 2. Dependence of the loop bias of different nature on their radius for the first version of the boundary 

condition (11) | exp ( ) |Sext SextE  r  for two values of extR  
On Fig. 3 similar dependence of loop bias for loops 

of different natures, but for the second version of the 

boundary condition (11) | 1Sext   is illustrated. The 

colors are the same. Green and yellow correspond to the 

isotropic approximation (5), red and blue correspond to 

the basis loops of zirconium. 

 
Fig. 3. Dependence of the loop bias of different nature on their radius for the second version of the boundary 

condition (11) | 1Sext   for two values of extR  

 

Fig. 4 shows the bias dependence of prismatic loops 

( 11 2 0 occurrence plane) of different nature on their 

radius for the first version of the boundary condition 

(11) | exp ( ) |Sext SextE  r  and for two values of extR . 

The red curve corresponds to the interstitial loop, the 

blue curve corresponds to the vacancy loop. The solid 

horizontal line, as before (see Fig. 2), corresponds to a 

straight dislocation. 

 
Fig. 4. Dependence of the loop bias of different nature on their radius for the first version of the boundary 

condition (11) | exp ( ) |Sext SextE  r  for two values of extR  
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On Fig. 5 similar dependence of bias 

призматических петель of different natures, but for the 
second version of the boundary condition (11) | 1Sext    

is illustrated. The colors are the same. 

 
Fig. 5. Dependence of the loop bias of different nature on their radius for the second version of the boundary 

condition (11) | 1Sext   for two values of 
extR  

From the results obtained it follows that all loops in 

zirconia are biased sinks, which absorb SIAs more 

efficiently than vacancies, since for all 0B  . In the 

case of basic loops (see Figs. 2, 3) the role of anisotropy 

is qualitatively insignificant. The displacement of pairs 

of curves (red-blue, green-yellow) is associated with the 

use of a modified coefficient in (6) hexP  instead of 

(1 2 ) / (1 )isP    , as in (5). The important fact is that 

the type of boundary condition on the outer surface of 

the area of influence of the loop significantly changes 

the dependence of bias loops on their nature.  When 

| exp ( ) |Sext SextE  r  bias does not depend on the nature 

of the loop [17], for | 1Sext   this is wrong (see Fig. 3). 

For prismatic loops in case | exp ( ) |Sext SextE  r  

situation is different (see Fig. 4): bias has a non-

monotonic behavior with increasing loop radius and 

depends on the type of loop; for | 1Sext   nothing 

changes qualitatively.  

SUMMARY 

From the point of view of the possibility of 

coexistence of prismatic loops of different natures, it 

looks preferable Fig. 4. Bias interstitial loop (red curve) 

more than vacancy one (blue curve). It absorbs more 

efficiently SIAs and growth, excess vacancies go to the 

vacancy loop. Howewer, as one can see Fig. 4, this is 

only true up to the point of intersection of the curves, 

which corresponds to 30 nmR  for 

60extR b ( 10 2

d 8.4 10 cm   ) and 40 nmR  for 

120extR b ( 10 2

d 2 10 cm   ). Further growth is not 

possible, since the vacancy loop begins to absorb SIAs 

more efficiently. It is not clear what causes this non-

monotonic behavior of bias. Boundary condition 

| 1Sext  (see Fig. 5) practically eliminates the 

possibility of coexistence of prismatic loops of different 

natures.  

Growth of basic vacancy loops, regardless of the 

type of boundary condition on extR , is possible only if 

there is a source of vacancies. It, in case 

| exp ( ) |Sext SextE  r , gives an advantage for survival 

to vacancy loops of any size (fig.2), and also facilitates 

to the nucleation and growth of small vacancy loops in 

the case | 1Sext  (fig.3). Such a source can be straight 

dislocations and edge elements of the dislocation 

network, the bias of which is shown by a solid 

horizontal line.  
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APPENDIX 

         
  

                                              a                                                                            b 

Coordinate system for a toroidal reservoir: a – R>Rext; b – R<Rext 

 

For radius 
extR R  the diffusion field was calculated in the region bounded by the surfaces DA, AB, BC, CD, 

for 
extR R  by the surfaces OA, AB, BC, CD, DO, taking into account the reflection symmetry in the plane 0   

and symmetry (after averaging over  ) about rotation around the  -axis. The specified symmetry imposes 

additional boundary conditions: / 0     on DA, BC, OA, corresponding to zero flux through the plane 0  , 

and  / 0r    on DO (axis of symmetry). An arbitrary inner surface S  in (12) is chosen for the convenience of 

calculations in the form of a rectangle of rotation. In Figure this is the contour L. 
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ПРО МОЖЛИВІСТЬ СПІВІСНУВАННЯ ДИСЛОКАЦІЙНИХ ПЕТЕЛЬ РІЗНОЇ ПРИРОДИ 

В ЦИРКОНІЇ У РАМКАХ КЛАСИЧНОЇ ПРУЖНОЇ ТЕОРІЇ 

О.Г. Троценко, А.В. Бабіч, П.М. Остапчук 

Відмінною рисою радіаційно-індукованої мікроструктури цирконію є, по-перше, співіснування 

призматичних петель різної природи, а по-друге, зародження та зростання до великих розмірів вакансійних 

базисних петель. У роботі у рамках класичних уявлень про пружну взаємодію між точковим дефектом та 

внутрішнім стоком наведено результати чисельних розрахунків залежності фактору переваги петель різної 

природи, що лежать у базисній та призматичній площинах цирконію, від їхнього радіусу. Показано істотну 

роль форми граничної умови на зовнішній поверхні області впливу петлі у тороідальній геометрії.  

Обговорюються можливості як співіснування призматичних петель різної природи, так і ріст вакансій них 

базисних петель.  

 

 

 

 

 


