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A distinctive feature of the radiation-induced microstructure of zirconium is, firstly, the coexistence of prismatic
loops of different natures, and secondly, the nucleation and growth to large sizes of vacancy basis loops. In the
work, within the framework of classical concepts of elastic interaction between a point defect and internal sink the
results of numerical calculations of the dependence of bias loops of different natures lying in the basal and prismatic
planes of zirconium on their radius are presented. The essential role of the form of the boundary condition on the
outer surface of loop area of influence in toroidal geometry is shown. Possibilities, both the coexistence of prismatic
loops of different natures and the growth of vacancy basis loops are discussed.

PACS: 62.20Dc;62.20.Fc

INTRODUCTION

In a given microstructure, absorption efficiency of a
sink for a given mobile defect quantifies the effect of
interaction energy (usually elastic energy) between the
sink and the defect on the absorption rate of the defect.
It has been recognized that some phenomena occurring
under irradiation, such as void swelling [1] or
irradiation creep [2], could be rationalized in terms of
absorption efficiencies of the different sinks present in
the microstructure. More precisely, the relative
difference between the absorption efficiencies of
interstitials and vacancies, known as the bias, plays a
key role in understanding these radiation induced
phenomena. Therefore, it was natural to apply the
standard elastic ideology (EID - elastic interaction
difference) to qualitatively  describe  another
phenomenon — radiation growth (RG) of zirconium and
its alloys [3,4]. Irradiation growth is the volume
conserved shape deformation of crystalline materials
when subjected to particle irradiation. It has been found

that zirconium during growth expands in the (a)-

direction and shrinks along the (c)-axis. Such its

behavior is associated with the idea of Buckley S.N.
[5, 6] that interstitial loops are formed predominantly on
the prismatic planes of zirconium and vacancy loops on
the basic. Although the physics of the RG mechanism
has changed over the years, Buckley's general concept
has remained the same: vacancy loops nucleating and
growing on the base planes “eating” the crystal along

the <c> -axis, while growing interstitial loops, forming
additional extra planes in the <a> -direction, increase its

size.

The main difference between the radiation-induced
microstructure of zirconium and other hcp metals is,
firstly, the coexistence of prismatic loops (Burgers

vector b:l/3<11§0>) of different kind, and |,
secondly, nucleation and growth to large sizes of

vacancy basis loops (Burgers vector b=1/2[0001])

[4, 7]. The latter possibly confirms Buckley's concept.
Frequently quoted version of the cause of RG of
zirconium is anisotropic diffusion of radiation point
defects (PD) between its planes (DAD theory —
diffusional anisotropy difference) [4, 8]. However, as
the authors themselves note, it cannot explain the fact of
the coexistence of vacancy and interstitial loops. As for
the basal loops, DAD theory provides only a
fundamental possibility separating PD flows between
straight dislocations lying in the basal and prismatic
planes of zirconium. And only under a certain condition
on the PD diffusion coefficients in (a)- and (c)-
directions. However, there is no experimental
confirmation of this condition. And, as numerical
calculations show, it is precisely not true in the region
of reactor temperatures [9]. Therefore, a physical cause
of RG associated only with anisotropic diffusion of
radiation PD seems poorly substantiated.

The goal of this work is to analyze, within the
framework of classical elastic theory (EID), both
possibilities, both the coexistence of prismatic loops of
different natures and the growth of vacancy basis loops.

1. MAIN ELEMENTS
OF THE EID - THEORY

1.1. ELASTIC INTERACTION ENERGY
Main element of EID - theory (D;; =Dg;;) is the
expression for interaction energy between a PD and
source of the inner deformation field u;;(r) . For PD of
the dipole type it has the following form:
E(r)=-Ru;;(r); P, =P;. Q)
If the elastic dipole has an axis of symmetry which
coincides with <c> -axis of hpc crystal, then tensor P,
has only diagonal components, which in the abbreviated

description can be written as P=P(1,1,&), P =P,
& =PJP,. Here P, and P, — strength of the force-
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dipoles in (c)- and (a) -directions. Note that in crystal

with non-cubic symmetry quantities P, and P, do not
have a simple physical meaning. Therefore, in papers
[10, 11], by analogy with P;=P(1,1,e), displacement
dipoles Qi=Q(1,1,9), Q=Q,, 0=0QJ/Q, were
introduced. They are connected with force-dipoles by
relation P;=C;Q;. Here Cj is the crystal elastic moduli.
It was assumed that the change in the volume AV of
the finite crystal caused by a PD is related to the
displacement dipoles by the relation AV =Q (2+9).

As a result:

P = AV Cy+Cpp +6()Cys .
2+6(¢) ’
5(e) = £(C, +Cpp) —2C, _ ?)
Cy—6Cps

In case of dilatation center (¢=1) for hexagonal crystal:
c 3 (Cll + ClZ)C33
4C,;; —2C5 —(C, +Cyy)
=—P"™*Spu;(r). 3)
In the approximation of an elastically isotropic medium
C,=C,=C;=4+2u; C,=C, =241 sothat

E(r)=-AV Spu; ;(r) =

AV 1+ is
E(r) =~ =5 2 Spu,; () ==P*Spuy (1) . (4)

Here v =0.33 is the Poisson ratio; x=33GPa is the
matrix shear modulus. Experimental values of the

elastic moduli of zirconium according to [12]
(Mbar =10"J/m®): C, = 1.154; C,=0.672;
C,=0.646; C,,=1725; C,=C,=0.363. Other

values: AV, =1.2w, AV, =-0.6w are the interstitial

and vacancy relaxation volume, o =2.36-10%m?is the
atomic volume of the lattice. So that in dimensionless
variables

P"™ /k,T =348.1, P*/k,T =308.2,

P /kyT =-174.05, P°/k,T =-154.1, T =573K.
As can be seen, the difference in the absolute values of
the coefficients is not large.

In the approximation of an elastically isotropic
medium equation (4) for circular edge vacancy loop of
radius R in cylindrical coordinates (r,z) in units kT

looks like [13]:

E(r,Z) = _P_ﬁ_b| (%7%j,

n(F Z) r Lz
|m(E,Ej_Lt Jm(Rthl(t)exp( tR)dt. (5)

For the same loop in the basal plane of zirconium equation (4) has following form:

E(r z):_ﬂi 1k, k—n, 1[r z
keT 2Rk, =k, v, °“(R'RY,
Here k _Cyv, —Cu Ve (Cis+Cu)
© Cp+Cy Cy —Cuv,

CuCiyv* +v(Cig® +2C44Cy3 —C5Cyy )+ C1yCyy =0 b=3.23-10"m

k, -k,

|-t Rﬁﬂ ©

; J,(t) — Bessel function; v, (o =1,2) — roots of the quadratic equation

— magnitude of the Burgers vector of loop.

Instead of I, its expression in terms of complete elliptic integrals of the first and second kind K(k), E(k) is often

used:
1 R R%—

Io(r,z)=

”\/(R+r) +7° (R—r)

Then the radius of the loop in (5), (6) is reduced, and
the transition to dimensionless variables r —r/b;

z—>z/b; R—>R/b allows one to reduce parameter

b . Note that there is no angular dependence here due to
symmetry with respect to rotation around z-axis,
perpendicular to the loop plane. It should also be noted,
that formulas (5), (6) were obtained by solving the
equilibrium equations of an elastic medium in terms of
displacements [14, 15]. But their analogues can also be

hex
E(r) = P L
ke T 47

Q) = (1-35)[ C.Y (55) + C W (55) |+ 27 (1—r§)d—2
73

(25) =V (23) +W(75)

Y (23) =K(73) +V (z3);

E(k)+ K(k)} ko 4RC 0

(R+r)*+12°

obtained in the formalism of Green's functions [16]. It
should be remembered that (r,z) - these are the

coordinates of the observation point.

For prismatic a -loop in zirconium the situation is
different. The axial symmetry in this case is absent so
well-developed methods for solving equilibrium
equations are not applicable. But the Green's function
formalism remains applicable [17]:

der dy
{jm (#3)+(Cyy - clz)J la {w( )+2r }} ®)

3

I:Cle (z3)+ Cl3\P(T§):| —(Cy —Cp)Y(73);

r,=x/|r—r'; =(z-2)/|r-r.
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The functions K(zZ), W(zZ), V(%) are quite
complicated. Their explicit expressions are given in
[16]. All dependence on z? is in the first integral (8),
and additional terms associated with the contribution of
7 are in the second integral. Recall that the vacancy
a-loop is in the “yz” plane of Cartesian coordinate
system. Its normal coincides with the positive
direction of the “x”-axis. The integration in (8) is
carried out over the area of the loop, therefore

x'=0. There is a dependence on the azimuthal
angle in the loop plane here, in contrast to (5), (6).
In Fig. 1 in dimensionless cylindrical coordinates
z=rsing; zZ'=r'sing’; y=rcose; Yy =r'cos¢ ;
Ir—r* =x?+r? —2rr'cos(p—¢') +r? the radial depen-
dence of the interaction energy of the vacancy prismatic
loop (8) with the SIA (P"™* /k,T =348.1) is shown for
four values of the angle ¢ .

4 T T

Interaction energy E/&T

relative distance rfb

Fig. 1. The radial dependence of the interaction energy of the vacancy prismatic loop (8) with the SIA for different
valuesoftheangle p:a— @=0;b-p=x/4;c— p=7n/2;d— ¢p=37x/4; R=60band x=>5b

We note a very weak dependence on the azimuth
angle ¢, which does not change the nature of the

interaction (sign) in each region. The interaction
changes sign only when passing from the inner region
of the loop (r<60b) to the outer one (r>60b).
However, this dependence greatly complicates
numerical calculations. Therefore, we will eliminate it
by averaging the right side of (8) over the angle ¢,

making the problem isotropic in the “ yz ” plane [19]. In

the expression (8), the dependence on the variable « x “
is quadratic, i.e. replacement x ——x doesn't change
anything. Therefore, as in the case of the basic loop,
numerical calculations can be carried out only in one
part of the half-space.

1.2. DIFFUSION PROBLEM

Having the interaction energy, the corresponding
diffusion problem is then solved - the diffusion
equation in a quasi-stationary approximation with
boundary conditions on the inner and outer surfaces of
the loop influence region. Following [18] we accept the
toroidal geometry of the area of influence. Toroidal
geometry seems more suitable for a loop than spherical
or cylindrical one, because it allows one to perform the
calculations for a loop of any size and without any
correction of the elastic field in its area of influence.
Since the angular dependence in (5), (6), and after
averaging in (8) is absent, in terms of a variable
w(r,&)=C(r,&)expE/C the diffusion problem in the

cross section of coaxial toroids in the area of influence
of the loop in dimensionless cylindrical coordinates has
the form:

Py azy,J{l aE)ay/ OE oy _

+ - 0. 9
r or ©)

o’ 8L o o0& o0&

Coordinate “ & coincides with “z”, if loop is in “xy”
plane (formulas (5), (6)), and with “x” in case (8);
coordinate r is a radial coordinate of the observation
point in the loop plane. For us, only absorption of PD is
important, so on the inner toroidal surface S; that

contains a dislocation line (r. is the dislocation core
radius) we use conventional boundary condition

CexpE(r)ls,=C* =0:
w(r,§)=0; (I’2+§2 +R2_rC2)2 — 4R

R—r, <r<R+r,. (10)

On the outer toroidal surface (R,, — radius of the

generatrix of the coaxial outer torus that corresponds to
the radius of the loop influence region) two cases are
possible

w(r,&) =expE(r,$);and w(r,&) =1;

(P +&+R*-R,2) = 4R%?;
R-R, <r<R+R, for R>R
0<r<R+R, for R<R,.
First one corresponds to the boundary condition in
the form C(r) |sm:6’ where C is the average PD

concentration in an effective medium that simulates the
influence of all sinks. Second one corresponds to

CexpE(r)|, =C . The sink bias is determined by a

(11)

ext ?

relation of the form B=1-Z /Z,. Here subscripts v
and i correspond to vacancies and SIA respectively. If
B>0, one says that the loop has a preference to SIA. The
dimensionless quantity Z, ; is called the absorption

efficiency of the PD by the sink. It is the result of the
diffusion problem (9)-(11) solution and looks like:
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2(1 R Ry ) = 5= [ xp(-E(r. ) [NV (r.) Jdor (12)

The integral is taken over an arbitrary surface S with
the outer normal n containing the dislocation line. The
cross section of this surface is shown in Figure in the
form of a line L (Appendix).

2. RESULTS
The diffusion problem (9)-(11) was solved
numerically by the finite difference method.
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161 u;’ 165 1&‘
LOOP RADIUS, b

Dependence of the loop bias of different nature on their
radius for the first version of the boundary condition

(11) Vs, =exXpE(r)|s, and for two values of R, one

can see on Fig. 2. The lower curves (green and yellow)
correspond to the isotropic approximation (5); the upper
curves (red and blue) correspond to the basal loops of
zirconium. The solid horizontal line corresponds to a
straight dislocation.
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10! 10 10° 104
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Fig. 2. Dependence of the loop bias of different nature on their radius for the first version of the boundary
condition (11) ¥ |, =exp E(r) |, for two values of R,

On Fig. 3 similar dependence of loop bias for loops
of different natures, but for the second version of the
boundary condition (11) ¥|.,=1 is illustrated. The

o3 Rex=60b
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0.0

10! 102 10° 10*
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colors are the same. Green and yellow correspond to the
isotropic approximation (5), red and blue correspond to
the basis loops of zirconium.
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Fig. 3. Dependence of the loop bias of different nature on their radius for the second version of the boundary
condition (11) ¥ |, =1 for two values of R,

Fig. 4 shows the bias dependence of prismatic loops
({ 112 0} occurrence plane) of different nature on their

radius for the first version of the boundary condition
(11) ¥|s.=expE(r)|s, and for two values of R,,.

0181 Rex=60 b

LOOP BIAS

10? 10°

LOOP RADIUS, b

The red curve corresponds to the interstitial loop, the
blue curve corresponds to the vacancy loop. The solid
horizontal line, as before (see Fig. 2), corresponds to a
straight dislocation.

Rex=120b

LOOP BIAS

10? 10°
LOOP RADIUS, b

Fig. 4. Dependence of the loop bias of different nature on their radius for the first version of the boundary
condition (11) ¥ |, =expE(r) |, for two values of R,
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On Fig.5 similar  dependence of bias
npusmamuyeckux nerens of different natures, but for the
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second version of the boundary condition (11) ¥, =1
is illustrated. The colors are the same.
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Fig. 5. Dependence of the loop bias of different nature on their radius for the second version of the boundary
condition (11) Y|, =1 for two values of R,

From the results obtained it follows that all loops in
zirconia are biased sinks, which absorb SIAs more
efficiently than vacancies, since for all B>0. In the
case of basic loops (see Figs. 2, 3) the role of anisotropy
is qualitatively insignificant. The displacement of pairs
of curves (red-blue, green-yellow) is associated with the
use of a modified coefficient in (6) P"™ instead of
P*(1—2v)/(l—v), as in (5). The important fact is that
the type of boundary condition on the outer surface of
the area of influence of the loop significantly changes
the dependence of bias loops on their nature. When
W s =EXPE(r) |, bias does not depend on the nature
of the loop [17], for ¥ |, =1 this is wrong (see Fig. 3).
For prismatic loops in case W|,=exXpE(r) |y
situation is different (see Fig. 4): bias has a non-
monotonic behavior with increasing loop radius and
depends on the type of loop; for ¥|,,=1 nothing
changes qualitatively.

SUMMARY

From the point of view of the possibility of
coexistence of prismatic loops of different natures, it
looks preferable Fig. 4. Bias interstitial loop (red curve)
more than vacancy one (blue curve). It absorbs more
efficiently SIAs and growth, excess vacancies go to the
vacancy loop. Howewer, as one can see Fig. 4, this is
only true up to the point of intersection of the curves,
which corresponds to R=30nm for

R,. =60b (p, ~8.4-:10°cm?) and R=40nm for

R, =120b (p, ~2-10" cm™). Further growth is not
possible, since the vacancy loop begins to absorb SIAs
more efficiently. It is not clear what causes this non-
monotonic behavior of bias. Boundary condition
¥l,.=1(see Fig. 5) practically eliminates the
possibility of coexistence of prismatic loops of different
natures.

Growth of basic vacancy loops, regardless of the
type of boundary condition on R, is possible only if
there is a source of vacancies. It, in case
Vs =EXPE(r) |, 0ives an advantage for survival

to vacancy loops of any size (fig.2), and also facilitates
to the nucleation and growth of small vacancy loops in
the case ¥ |, =1(fig.3). Such a source can be straight

dislocations and edge elements of the dislocation
network, the bias of which is shown by a solid
horizontal line.
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APPENDIX

Coordinate system for a toroidal reservoir: a — R>Rgy; b — R<Rey

For radius R >R, the diffusion field was calculated in the region bounded by the surfaces DA, AB, BC, CD,
for R <R,, by the surfaces OA, AB, BC, CD, DO, taking into account the reflection symmetry in the plane & =0
and symmetry (after averaging over ¢ ) about rotation around the ¢&-axis. The specified symmetry imposes
additional boundary conditions: oy /6& =0 on DA, BC, OA, corresponding to zero flux through the plane £=0,
and ow/or =0 on DO (axis of symmetry). An arbitrary inner surface S in (12) is chosen for the convenience of
calculations in the form of a rectangle of rotation. In Figure this is the contour L.
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PO MOJKJIUBICTh CINIBICHYBAHHS JUCJIOKAIIMHUX NMETEJb PI3HOI TPUPOIUN
B IUPKOHII Y PAMKAX KJIACUYHOI ITPYKHOI TEOPII

O.I. Tpoyenko, A.B. babiu, II.M. Ocmanuyk

BinmiHHOIO puCOI0  pajiamiifHO-IHAYKOBaHOI MIKPOCTPYKTYpH LHPKOHIIO €, TMO-Teplie, CHiBiCHyBaHHSA
MIPU3MATHYHUX TI€TENb Pi3HOI MPUPOAH, a MO-JIPYTe, 3apO/PKEHHS Ta 3pPOCTAHHSA 10 BEIUKUX PO3MIpiB BaKaHCIHHUX
6azucHux merenb. Y poOOTi y paMKax KIACHYHHUX YSBJIECHb IPO MPYXKHY B3a€MOAII0 MK TOUKOBUM Je(EeKTOM Ta
BHYTPIIIHIM CTOKOM HaBEIEHO PE3yJbTaTH YMCEIbHUX PO3PaxyHKIB 3aJIC)KHOCTI (pakTOpy IepeBaru mereib pi3Hol
MIPUPOIH, IO JISKATh Y Oa3UCHIN Ta MPU3MATHYHIN IDIOMIMHAX IIUPKOHI0, BT IXHROTO pamiycy. [loka3zaHo icToTHY
pois (GOpMH TpPaHWYHOI yYMOBH Ha 30BHIINHIA TOBEpXHI OOJACTI BIUIMBY METIi Yy TOPOiJalibHIM TreoMeTpii.
OOTOBOPIOIOTHCS MOKIIMBOCTI SIK CHIBICHYBaHHS MPU3MATUYHAX IETENb PI3HOT MPUPOIH, TAK 1 PICT BaKaHCIH HUX
0a3nCHUX TETEllb.
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