NEUTRON SOURCE BASED ON THE MULTIFUNCTIONAL ACCELERATOR COMPLEX OF THE NSC KIPT

G.D. Kovalenko, I.S. Guk, P.I. Gladkikh
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: guk@kipt.kharkov.ua

An overview of existing neutron sources in the world, which are used for fundamental and applied research in various fields of science and technology, was conducted. The possibility of creating a neutron source on the basis of a superconducting electron accelerator, which is the basis of the multi-functional accelerator complex of the National Science Center NSC KIPT, was considered. Based on the design parameters of the electron beam, the intensity of the neutron beam was estimated.

PACS: 07.05.Tr, 41.50.+h; 41.75.Fr; 78.70En

INTRODUCTION

Along with the wide use in physical research of various sources of electrons, protons, and photons, neutron beams provide an opportunity to obtain a number of important information about the nature of phenomena that can be investigated thanks to the unique characteristics of the neutron.

While the number of protons in the nucleus of an atom determines the chemical properties of the atom, the physical properties of the nucleus depend on the number of neutrons in the nucleus. Only the nucleus of the lightest isotope of hydrogen does not contain neutrons, all other nuclei consist of protons and neutrons. In atomic nuclei, the neutron is the basis of the stability of the nucleus over time.

A free neutron has a mass of $1.674927471 \times 10^{-27}$ kg [1 - 6], which slightly exceeds the mass of a proton. The mean square radius of the neutron is close to 0.8 fm. A neutron has a magnetic moment and is a fermion with spin $\frac{1}{2}$. A neutron has no electric charge [1, 3, 5].

A free neutron is an unstable particle whose main decay channel is into a proton, an electron, and an anti-neutrino

$n^0 \rightarrow p^+ + e^- + \nu_e$.

The beta decay time of neutrons according to the latest measurements is 877.75 s [7 - 9].

A neutron is a bound state of three quarks [1, 3, 5, 6].

Experimentally, the internal structure of the neutron was investigated by electron scattering on a deuteron by R. Hofstadter [10 - 12].

The interaction of neutrons with atoms is relatively weak, which allows neutrons to penetrate deeply enough into matter – this is their significant advantage compared to X-rays and γ-rays, as well as beams of charged particles.

1. SOURCES OF NEUTRONS

Free neutrons are formed as a result of nuclear-physical processes in nuclei and the interaction of nuclei with incident particles.

A) The most intense source of spontaneous fission neutrons is the 252Cf isotope of californium [13 - 15].

Radionuclide 252Cf decays by the mechanism of alpha decay (96.3%) and spontaneous fission (3.1%).

Neutron radiation 252Cf consists mainly of spontaneous fission neutrons. One act of spontaneous fission is accompanied by the emission of 3.76 neutrons with an average energy of 2.3 MeV. The half-life of the isotope is 2.645 years.

The isotope can be obtained by long-term irradiation of uranium or plutonium with neutrons in powerful nuclear reactors specially built for the production of transuranium elements.

The main application of 252Cf is the production of powerful and extremely compact neutron sources (Fig. 1).

Currenty, the only producers of the isotope in the world are the High Flux Isotope Reactor HFIR at Oak Ridge National Laboratory (ORNL) and the High Flux Reactors at Dimitrograd in Russia [14].

The annual production of the isotope is about 500 mg [17].

1 g of the isotope can emit a powerful flow of neutrons – 2.3×10^{12} n/s.

252Cf sources are used in neutron activation analysis, in neutron radiography; in geological exploration and mineral extraction; in the steelmaking, chemical, oil refining, and coal mining industries; in the production of parts for nuclear energy and aerospace engineering, as well as in nuclear medicine for the treatment of malignant tumors.

B) Somewhat less intense are radionuclide sources of neutrons [18], built on the basis of excitation in certain chemical elements of nuclear reactions of the type (α, n) – absorption of an α-particle with the emission of a neutron, or (γ, n) – absorption of a γ-quantum with neutron emission. They are, as a rule, a homogeneous compressed mixture of an element emitting α-particles...
or γ-quanta and a target element in which a nuclear reaction is excited. Polonium, radium, plutonium, americium, curium are used as α-emitters, and antimony, yttrium, radium, and mesothorium are used as γ-emitters. Target elements for α-emitters are beryllium, boron, for γ-emitters – beryllium, deuterium. The mixture of elements is sealed in ampoules made of stainless steel. The most famous ampoule sources are radium-beryllium and polonium-beryllium.

Energy spectra of α-neutron sources are non-continuous, from thermal to 6...8 MeV, γ-neutron sources are approximately monoenergetic, tens or hundreds of kiloelectron volts. The neutron yield of γ-neutron sources is 1-2 orders of magnitude lower than that of α-neutron sources, and is accompanied by strong γ-radiation.

The field of application of radionuclide sources coincides with the field of use of the 252Cf isotope.

C) In scientific research and industry [18, 19] widely used neutron sources that use nuclear reactions between hydrogen isotopes deuterium and tritium:

$$D+D \rightarrow ^4He+n+3.3 \text{ MeV}; D+T \rightarrow ^4He+n+14.6 \text{ MeV}. $$

In such sources, deuterons are accelerated to an energy of 100...500 keV in an electrostatic field and interact with targets saturated with deuterium or tritium.

The main parts of a neutron generator are an ion source, an accelerator tube, a target, a vacuum system, and a high voltage source.

Depending on the tasks, various implementations of the accelerator design are possible. Thus, for nuclear-geophysical methods of research, unsoldered tubes that do not require a special vacuum system are often used in wells and many laboratory generators. They contain an ion source, an accelerating gap and a target, as well as a deuterium repository [19]. The yield of neutrons in such tubes reaches $10^8...10^9 \text{ s}^{-1}$.

The accelerator of a portable neutron generator for the treatment of oncological diseases [20] (Fig. 2) requires a special deuterium source, a pumping system and target cooling. A reaction is used in the neutron source

$$^2H+^9Be \rightarrow ^{10}B+n.$$

The average energy of neutrons in this process is about 2.5 MeV. The neutron output of such a generator is about 10^9 n/s.

For the industrial production of the medical isotope 99mTc [21, 22], an installation was developed and manufactured, the general view of which is presented in Fig. 3.

The source of neutrons in this production is a deuteron accelerator and a tritium target. In such an accelerator-target system, it was possible to achieve the highest neutron flux – 4.6·1013 n/s. The cut diagram of the installation is shown in Fig. 3.

Fig. 2. Scheme of the accelerator [20]

Fig. 3. Scheme for obtaining the 99mTc isotope [21]

The appearance of the deuteron accelerator is shown in Fig. 4.

Fig. 4. Deuteron accelerator [21]

An important advantage of neutron generators over isotope sources is the possibility of their operation in the pulse mode, control of neutron output and a relatively narrow range of their energies.

D) For the production of neutrons, the most intensive and one of the most effective processes is nuclear fission in nuclear reactors, as well as spallation sources.

The world’s most famous neutron centers work using these processes [23, 24]:

Asia and Australia
J-Parc (Japan)
KENS (Tsukuba, Japan)
JAERI (Japan)
In the thirties of the twentieth century, it was established that the uranium nucleus, after absorbing a neutron, underwent fission, as a result of which an average of 2.416 free neutrons were released. These neutrons have an average energy of about 2 MeV. During the decay of the uranium nucleus, energy of about 202.5 MeV is also released. This phenomenon became the basis for the creation of an intensive source of free neutrons – a nuclear reactor. The most intensive neutron flows are obtained in specially designed research reactors. In the most powerful reactors, the highly enriched isotope of uranium ^{235}U is usually used as fuel.

The research neutron source FRM II Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany [25] is one of the most powerful neutron sources in the world. Its thermal capacity is 20 MW. It produces a flux of more than $10^{15}\text{n/(cm}^2\cdot\text{s)}$ on the surface of the active zone, which are used for scientific research, industry and medicine.

The FRM II fuel cell [26] (Fig. 5) is a cylinder with a length of about 1.3 m, a diameter of 24 cm and a total weight of 53 kg. It contains approximately 8 kg of uranium ^{235}U enriched to 93%. The fuel used is U_3Si_2 dispersed in an Al matrix. After 60 days of operation in the nominal mode, the spent heat-emitting element is unloaded, and then placed under water for a minimum of 6.5 years.

The location of the fuel element in the reactor is shown in Fig. 6.
The main task of HFIR during its construction in 1965 was the production of isotopes of transuranic elements. Channels built later (Fig. 8) provided support for basic research programs related to neutron scattering by polymers, colloids, magnetic materials, alloys, superconductors, and biological materials. More than 500 scientists conduct their research at this reactor every year.

In general, there are about 200 research reactors operating in the world [24], which conduct research using neutron beams.

![Fig. 7. View of the reactor from above [30]](image)

Fig. 7. View of the reactor from above [30]

The basis of the neutron source is created by a linear accelerator that accelerates hydrogen ions from 2.5 MeV to 1 GeV with a frequency of 60 pulses per second and a length of 1 ms [35, 36]. Up to an energy of 200 MeV, two types of accelerator structures are used, which work at room temperature. Further acceleration is achieved using superconducting niobium resonators. These resonators are cooled by liquid helium to an operating temperature of 2 K.

The accelerated beam flies through the foil, which removes electrons from the negatively charged hydrogen ions, forming protons (H+), and enters the magnetic ring. 1.5×10^{14} protons circulating in the ring are released in a time of 0.7 μs into a liquid mercury target, where neutrons are generated (Fig. 11). These neutrons are directed into the channels attached to the instrument stations. There, neutrons of different energies are used in various experiments with materials. SNS can support 24 instruments that can run 80 experiments simultaneously.

![Fig. 8. The active zone of the HFIR reactor [31]](image)

Fig. 8. The active zone of the HFIR reactor [31]

E) The world's most powerful neutron sources are based on the Spallation phenomenon.

In a Spallation Neutron Source, high-energy protons collide with a heavy metal target (such as lead, tungsten, mercury, or uranium). Under the influence of this impact, approximately 20 to 30 neutrons per proton are evaporated from the target's nucleus. The scheme of this process is presented in Fig. 9.

As of 2022, the most powerful neutron source in the world is the Spallation Neutron Source in Oak Ridge, Tennessee [32, 34]. The general view of the SNS is presented in Fig. 10.

Construction of the neutron center cost $1.4 billion and was completed in 2006.

![Fig. 9. Interaction of a proton with a nucleus [33]](image)

Fig. 9. Interaction of a proton with a nucleus [33]

![Fig. 10. Spallation Neutron Source in Oak Ridge](image)

Fig. 10. Spallation Neutron Source in Oak Ridge

![Fig. 11. Interaction of the beam with the target [34]](image)

Fig. 11. Interaction of the beam with the target [34]
With a more intense, brighter neutron source and world-class instrumentation, SNS provides the community with unprecedented research opportunities. SNS enables measurements with greater sensitivity, higher speed, higher resolution, and in more complex sample environments than was possible with existing neutron facilities.

The average value of the neutron flux density obtained at proton accelerators is lower than at reactors, but when accumulators are used to reduce the pulse duration, the value of the neutron flux is high, which is especially important when using the flight technique in experiments.

The spectra of neutrons produced in reactors and proton accelerators also differ.

On Fig. 12 shows the normalized energy spectra of neutrons, which were obtained as a result of using the process of nuclear fission in reactors and the process of interaction of protons with an energy of 1 GeV on a Pb target [37].

![Neutron spectra of various sources](image)

Fig. 12. Neutron spectra of various sources [37]

G) Photoneutron reactions of the type (γ, n) and (γ, 2n) are another possibility of obtaining neutrons. The intersection of these reactions has a so-called giant resonance for heavy nuclei at an energy of γ-quanta of about 15 MeV. Since the yield of bremsstrahlung γ quanta is proportional to the charge of the nucleus and the energy of the primary electrons, in order to obtain the largest number of neutrons, it is necessary to use accelerators with an energy of more than 30 MeV [38].

One of the most intense sources of neutrons built on these principles is nELBE [39, 40], which is created on the basis of the ELBE superconducting accelerator. This neutron source is designed to measure reactions caused by fast neutrons, which are relevant for future nuclear transmutation facilities and nuclear waste management. Experiments use neutrons in the energy range from 10 keV to 10 MeV. The average intensity of the neutron beam in the target for electrons with energy $E_e = 40$ MeV and beam current $I_e = 1$ mA is 2.7×10^{13} n/s [40]. Due to the short pulse of electrons – 5 ps, the characteristics of the neutron beam of this source are not inferior to similar parameters of the beam of the most intense pulsed neutron sources [39, 40].

As it was already emphasized above, the spectra of neutrons from different sources have their own characteristics. Currently, in the practice of experiments, the classification of neutrons by energy [25, 30], presented in Fig. 13, is accepted.

Neutrons can also be classified by de Broglie wavelength and speed. For neutron imaging, thermal and cold neutrons are more promising due to simple registration methods. The fact that thermal energy neutrons have wavelengths comparable to interatomic distances in matter makes them an indispensable tool for condensed matter research. Methods of transforming the neutron spectrum in various neutron centers can be found in [23].

Table 1. Classification of neutrons by energy

<table>
<thead>
<tr>
<th>Neutrons</th>
<th>Energy range</th>
<th>Wavelength [Å]</th>
<th>Velocity [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ultra cold</td>
<td>≤ 300 MeV</td>
<td>> 000</td>
<td>≤ 8</td>
</tr>
<tr>
<td>very cold</td>
<td>300 MeV - 0.12 MeV</td>
<td>52.2 - 26.1</td>
<td>7.5 – 15.2</td>
</tr>
<tr>
<td>cold</td>
<td>0.12 MeV - 1.2 MeV</td>
<td>26.1 - 2.6</td>
<td>15.2 – 1515</td>
</tr>
<tr>
<td>thermal</td>
<td>2 MeV - 100 MeV</td>
<td>2.6 - 0.9</td>
<td>1515 – 4574</td>
</tr>
<tr>
<td>epithermal</td>
<td>100 MeV - 1 MeV</td>
<td>0.9 - 0.28</td>
<td>4574 – 13,8 10^7</td>
</tr>
<tr>
<td>intermediate</td>
<td>100 - 0.8 MeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fast</td>
<td>> 0.8 MeV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 13. Classification of neutrons by energy

2. SOURCES OF NEUTRONS IN NSC KIPT

Research with neutrons has been carried out at the National Science Center KIPT since the institute was established. The sources of neutrons were mostly various nuclear processes that occur during the interaction of accelerator beams with nuclei. You can learn more about these works from the review published in the monograph [41].

In recent years, several projects of neutron sources based on various physical principles have been developed and implemented [20, 41 - 43].

A subcritical assembly controlled by an electron accelerator was built, the main task of which is to create a prototype of a safe nuclear power plant of the future [43]. This installation can also be used as a source of neutrons to perform some tasks (see the program in works [42, 43]). The active zone of the installation is presented in Fig. 14. According to preliminary calculations [41, 42, 44], the maximum average intensity of the neutron flux in the center of the active zone of the installation will reach $(1.14...4) \times 10^{13}$ n/(s·cm²) at a beam power of 100 kW and an electron energy of 100 MeV.

![3D model of the active zone](image)

Fig. 14. 3D model of the active zone:
1 – support plate; 2 – source of neutrons; 3 – fuel cell of the active zone; 4 – beryllium reflector blocks; 5 – graphite reflector; 6 – neutron channel; 7 – electron beam vacuum chamber

The beginning of the neutron channels is located at a distance greater than 60 cm from the center of the active zone (see Fig. 14 [42]). As can be seen from the distri-
bution of the neutron flux density in the subcritical assembly (Fig. 15), at such a distance the flux density will be about $1 \cdot 10^{17}$ n/(s·cm²).

![Graph showing radial distribution of neutron flux density](image)

Fig. 15. Radial distribution of the neutron flux density in a subcritical assembly in the plane at the level of the converter [44]

Let’s consider what neutron fluxes can be obtained when using a linear electron accelerator, which is the basis of the conceptual design of a multifunctional accelerator complex, which is being developed at the National Science Center KIPT [45, 46].

The superconducting injector of the complex in the high-charge mode will accelerate bunches of electrons with a charge of 1 ns, 15 ps long and a frequency of about 500 kHz. The average current at the injector output in this mode will not exceed 0.5 mA. After acceleration in a linear accelerator, the electron energy will reach 200 MeV.

As follows from the works [38, 41, 44], one electron with an energy of 200 MeV in a uranium target generates ~0.14 neutrons. The total average flow of neutrons at the output of the neutron channel will be $4.4 \cdot 10^{13}$ s⁻¹. The pulse flow will reach $6 \cdot 10^{19}$ n/s. Such beam parameters, as demonstrated in works [39, 40], allow, due to the short pulse of electrons and the small size of the target, to obtain neutron fluxes on short flight bases that are not inferior to installations with proton accelerators.

The authors are grateful to M.F. Shulga and F.A. Peev for a fruitful discussion of the materials of the work.

REFERENCES

22. Environmental Impact Statement for the Construction Permit for the SHINE Medical Radioisotope...

ДЖЕРЕЛО НЕЙТРОНІВ НА ОСНОВІ БАГАТОФУНКЦІОНАЛЬНОГО ПРИСКОРЮВАЛЬНОГО КОМПЛЕКСУ НІЦ ХФТІ

Г.Д. Коваленко, І.С. Гук, П.І. Гладких

Проведено огляд існуючих у світі джерел нейтронів, які використовуються для проведення фундаментальних та прикладних досліджень у різних областях науки та технологій. Розглянуто можливість створення на основі надпровідного прискорювача електронів, який є основою багатофункціонального прискорювального комплексу НІЦ ХФТІ, джерела нейтронів. На основі проектних параметрів електронного пучка зроблена оцінка інтенсивності пучка нейтронів.